Flower Diversity and Angiosperm Diversification

  • Pamela S. SoltisEmail author
  • Douglas E. Soltis
Part of the Methods in Molecular Biology book series (MIMB, volume 1110)


The flower itself, which comprises most of the evolutionary innovations of flowering plants, bears special significance for understanding the origin and diversification of angiosperms. The sudden origin of angiosperms in the fossil record poses unanswered questions on both the origins of flowering plants and their rapid spread and diversification. Central to these questions is the role that the flower, and floral diversity, played. Recent clarifications of angiosperm phylogeny provide the foundation for investigating evolutionary transitions in floral features and the underlying genetic mechanisms of stasis and change. The general features of floral diversity can best be addressed by considering key patterns of variation: an undifferentiated versus a differentiated perianth; elaboration of perianth organs in size and color; merosity of the flower; and phyllotaxy of floral organs. Various models of gene expression now explain the regulation of floral organization and floral organ identity; the best understood are the ABC(E) model and its modifications, but other gene systems are important in specific clades and require further study. Furthermore, the propensity for gene and genome duplications in angiosperms provides abundant raw material for novel floral features—emphasizing the importance of understanding the conservation and diversification of gene lineages and functions in studies of macroevolution.


Flower evolution Phylogeny Angiosperms 



We thank the many students and postdocs in our lab who have contributed to our understanding of floral diversity and genetics: S. Brockington, M. Buzgo, A. Chanderbali, S. Kim, J. Koh, and M.-J. Yoo. This chapter reports on research supported by NSF grants PGR-0115684, PGR-0638595, and EF-0431266.


  1. 1.
    Friedman WE (2009) The meaning of Darwin’s ‘abominable mystery’. Am J Bot 96(1):5–21PubMedCrossRefGoogle Scholar
  2. 2.
    Friis EM, Crane PR, Pedersen KR (2011) Early flowers and angiosperm evolution. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  3. 3.
    Friis EM, Pedersen KR, Crane PR (2010) Diversity in obscurity: fossil flowers and the early history of angiosperms. Philos Trans R Soc Lond B Biol Sci 365(1539):369–382PubMedCrossRefGoogle Scholar
  4. 4.
    Judd WS, Campbell CS, Kellogg EA, Stevens PF, Donoghue MJ (2008) Plant systematics—a phylogenetic approach, 3rd edn. Sinauer, Sunderland, MAGoogle Scholar
  5. 5.
    Bramwell D (2002) How many plant species are there? Plant Talk 28:32–34Google Scholar
  6. 6.
    Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004) Pollination syndromes and floral specialization. Annu Rev Ecol Evol Syst 35:375–403CrossRefGoogle Scholar
  7. 7.
    Waser NM (2006) Specialization and generalization in plant-pollinator interactions: a historical perspective. In: Waser NM, Ollerton J (eds) Plant-pollinator interactions from a specialization to generalization. University of Chicago Press, Chicago, IL, pp 3–17Google Scholar
  8. 8.
    Cantino P, Doyle J, Graham S, Judd W, Olmstead R, Soltis DE, Soltis PS, Donoghue M (2007) Towards a phylogenetic nomenclature of Tracheophyta. Taxon 56:822–846CrossRefGoogle Scholar
  9. 9.
    Kenrick P, Crane PR (1997) The origin and early diversification of land plants. Smithsonian Institution Press, Washington, DCGoogle Scholar
  10. 10.
    Pryer KM, Schneider H, Smith AR, Cranfill R, Wolf PG, Hunt JS, Sipes SD (2001) Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature 409(6820):618–622PubMedCrossRefGoogle Scholar
  11. 11.
    Doyle JA (2012) Molecular and fossil evidence on the origin of angiosperms. Rev Earth Planet Sci 40:301–326CrossRefGoogle Scholar
  12. 12.
    Soltis DE, Smith SA, Cellinese N, Wurdack KJ, Tank DC, Brockington SF, Refulio-Rodriguez NF, Walker JB, Moore MJ, Carlsward BS, Bell CD, Latvis M, Crawley S, Black C, Diouf D, Xi Z, Rushworth CA, Gitzendanner MA, Sytsma KJ, Qiu YL, Hilu KW, Davis CC, Sanderson MJ, Beaman RS, Olmstead RG, Judd WS, Donoghue MJ, Soltis PS (2011) Angiosperm phylogeny: 17 genes, 640 taxa. Am J Bot 98(4):704–730PubMedCrossRefGoogle Scholar
  13. 13.
    Moore MJ, Bell CD, Soltis PS, Soltis DE (2007) Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proc Natl Acad Sci USA 104(49):19363–19368PubMedCrossRefGoogle Scholar
  14. 14.
    Moore MJ, Soltis PS, Bell CD, Burleigh JG, Soltis DE (2010) Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. Proc Natl Acad Sci USA 107(10):4623–4628PubMedCrossRefGoogle Scholar
  15. 15.
    Ronse deCraene LP, Soltis PS, Soltis DE (2003) Evolution of floral structures in basal angiosperms. Int J Plant Sci 164:S329–S363CrossRefGoogle Scholar
  16. 16.
    Soltis DE, Soltis PS, Endress PK, Chase MW (2005) Angiosperm phylogeny and evolution. Sinauer Associates, Sunderland, MAGoogle Scholar
  17. 17.
    Buzgo M, Soltis PS, Soltis DE (2004) Floral developmental morphology of Amborella trichopoda (Amborellaceae). Int J Plant Sci 165:925–947CrossRefGoogle Scholar
  18. 18.
    Yoo M-J, Soltis PS, Soltis DE (2010) Expression of floral MADS-box genes in two divergent water lilies: Nymphaeales and Nelumbo. Int J Plant Sci 171:121–146CrossRefGoogle Scholar
  19. 19.
    Yoo MJ, Chanderbali AS, Altman NS, Soltis PS, Soltis DE (2010) Evolutionary trends in the floral transcriptome: insights from one of the basalmost angiosperms, the water lily Nuphar advena (Nymphaeaceae). Plant J 64(4):687–698PubMedCrossRefGoogle Scholar
  20. 20.
    Friis EM, Pedersen KR, Crane PR (2001) Fossil evidence of water lilies (Nymphaeales) in the early cretaceous. Nature 410(6826):357–360PubMedCrossRefGoogle Scholar
  21. 21.
    Soltis PS, Brockington SF, Yoo MJ, Piedrahita A, Latvis M, Moore MJ, Chanderbali AS, Soltis DE (2009) Floral variation and floral genetics in basal angiosperms. Am J Bot 96(1):110–128PubMedCrossRefGoogle Scholar
  22. 22.
    Soltis DE, Leebens-Mack J, Soltis PS (eds) (2006) Developmental genetics of the flower, vol 44, Advances in botanical research. Academic, San DiegoGoogle Scholar
  23. 23.
    Endress PK (2006) Angiosperm floral evolution: morphological developmental framework. In: Soltis DE, Leebens-Mack J, Soltis PS (eds) Developmental genetics of the flower, vol 44, Advances in botanical research. Elsevier, New York, pp 1–61CrossRefGoogle Scholar
  24. 24.
    Frohlich MW (2006) Recent developments regarding the evolutionary origins of flowers. In: Soltis DE, Leebens-Mack J, Soltis PS (eds) Developmental genetics of the flower, vol 44, Advances in botanical research. Elsevier, New York, pp 63–127CrossRefGoogle Scholar
  25. 25.
    Irish V (2006) Duplication, diversification, and comparative genetics of angiosperm MADS-box genes. In: Soltis DE, Leebens-Mack J, Soltis PS (eds) Developmental genetics of the flower, vol 44, Advances in botanical research. Elsevier, New York, pp 127–159CrossRefGoogle Scholar
  26. 26.
    Soltis PS, Soltis DE, Kim S, Chanderbali A, Buzgo M (2006) Expression of floral regulators in basal angiosperms and the origin and evolution of the ABC model. In: Soltis DE, Leebens-Mack J, Soltis PS (eds) Developmental genetics of the flower, vol 44, Advances in botanical research. Elsevier, New York, pp 483–506CrossRefGoogle Scholar
  27. 27.
    Theissen G, Melzer R (2007) Molecular mechanisms underlying origin and diversification of the angiosperm flower. Ann Bot (Lond) 100(3):603–619CrossRefGoogle Scholar
  28. 28.
    Bowman JL, Smyth DR, Meyerowitz EM (1991) Genetic interactions among floral homeotic genes of Arabidopsis. Development 112(1):1–20PubMedGoogle Scholar
  29. 29.
    Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353(6339):31–37PubMedCrossRefGoogle Scholar
  30. 30.
    Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF (2004) The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol 14(21):1935–1940PubMedCrossRefGoogle Scholar
  31. 31.
    Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405(6783):200–203PubMedCrossRefGoogle Scholar
  32. 32.
    Theiben G (2001) Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4(1):75–85CrossRefGoogle Scholar
  33. 33.
    Colombo L, Franken J, Koetje E, van Went J, Dons HJ, Angenent GC, van Tunen AJ (1995) The petunia MADS box gene FBP11 determines ovule identity. Plant Cell 7(11):1859–1868PubMedCentralPubMedGoogle Scholar
  34. 34.
    Pinyopich A, Ditta GS, Savidge B, Liljegren SJ, Baumann E, Wisman E, Yanofsky MF (2003) Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424(6944):85–88PubMedCrossRefGoogle Scholar
  35. 35.
    Bowman JL (1997) Evolutionary conservation of angiosperm flower development at the molecular and genetic levels. J Biosci 22:515–527CrossRefGoogle Scholar
  36. 36.
    Kim S, Koh J, Yoo MJ, Kong H, Hu Y, Ma H, Soltis PS, Soltis DE (2005) Expression of floral MADS-box genes in basal angiosperms: implications for the evolution of floral regulators. Plant J 43(5):724–744PubMedCrossRefGoogle Scholar
  37. 37.
    Kramer EM, Holappa L, Gould B, Jaramillo MA, Setnikov D, Santiago PM (2007) Elaboration of B gene function to include the identity of novel floral organs in the lower eudicot Aquilegia. Plant Cell 19(3):750–766PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Rasmussen DA, Kramer EM, Zimmer EA (2009) One size fits all? Molecular evidence for a commonly inherited petal identity program in Ranunculales. Am J Bot 96(1):96–109PubMedCrossRefGoogle Scholar
  39. 39.
    Chanderbali AS, Yoo MJ, Zahn LM, Brockington SF, Wall PK, Gitzendanner MA, Albert VA, Leebens-Mack J, Altman NS, Ma H, dePamphilis CW, Soltis DE, Soltis PS (2010) Conservation and canalization of gene expression during angiosperm diversification accompany the origin and evolution of the flower. Proc Natl Acad Sci USA 107(52):22570–22575PubMedCrossRefGoogle Scholar
  40. 40.
    Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang H, Soltis PS, Soltis DE, Clifton SW, Schlarbaum SE, Schuster SC, Ma H, Leebens-Mack J, dePamphilis CW (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473(7345):97–100PubMedCrossRefGoogle Scholar
  41. 41.
    Becker A, Theissen G (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol 29(3):464–489PubMedCrossRefGoogle Scholar
  42. 42.
    Soltis PS, Burleigh JG, Chanderbali AS, Yoo M-J, Soltis DE (2010) Gene and genome duplication in plants. In: Dittmar K, Liberles D (eds) Evolution after genome duplication. Wiley, Hoboken, pp 369–398Google Scholar
  43. 43.
    Kim S, Yoo MJ, Albert VA, Farris JS, Soltis PS, Soltis DE (2004) Phylogeny and diversification of B-function MADS-box genes in angiosperms: evolutionary and functional implications of a 260-million-year-old duplication. Am J Bot 91(12):2102–2118PubMedCrossRefGoogle Scholar
  44. 44.
    Kramer EM, Dorit RL, Irish VF (1998) Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149(2):765–783PubMedGoogle Scholar
  45. 45.
    de Martino G, Pan I, Emmanuel E, Levy A, Irish VF (2006) Functional analyses of two tomato APETALA3 genes demonstrate diversification in their roles in regulating floral development. Plant Cell 18(8):1833–1845PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Rijpkema A, Gerats T, Vandenbussche M (2006) Genetics of floral development in Petunia. In: Soltis DE, Leebens-Mack J, Soltis PS (eds) Developmental genetics of the flower, vol 44, Advances in botanical research. Elsevier, New York, pp 237–278CrossRefGoogle Scholar
  47. 47.
    Paterson AH, Bowers JE, Chapman BA (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci USA 101(26):9903–9908PubMedCrossRefGoogle Scholar
  48. 48.
    Paterson AH, Wang X, Li J, Tang H (2012) Ancient and recent polyploidy in monocots. In: Soltis PS, Soltis DE (eds) Polyploidy and genome evolution. Springer, Heidelberg, pp 93–108CrossRefGoogle Scholar
  49. 49.
    Whipple CJ, Ciceri P, Padilla CM, Ambrose BA, Bandong SL, Schmidt RJ (2004) Conservation of B-class floral homeotic gene function between maize and Arabidopsis. Development 131(24):6083–6091PubMedCrossRefGoogle Scholar
  50. 50.
    Whipple CJ, Zanis MJ, Kellogg EA, Schmidt RJ (2007) Conservation of B class gene expression in the second whorl of a basal grass and outgroups links the origin of lodicules and petals. Proc Natl Acad Sci USA 104(3):1081–1086PubMedCrossRefGoogle Scholar
  51. 51.
    Chanderbali AS, Kim S, Buzgo M, Zheng P, Oppenheimer DG, Soltis DE, Soltis PS (2006) Genetic footprints of stamen ancestors guide perianth evolution in Persea (Lauraceae). Int J Plant Sci 167:1075–1089CrossRefGoogle Scholar
  52. 52.
    Soltis DE, Chanderbali AS, Kim S, Buzgo M, Soltis PS (2007) The ABC model and its applicability to basal angiosperms. Ann Bot 100(2):155–163PubMedCrossRefGoogle Scholar
  53. 53.
    Jiao Y, Leebens-Mack J, Ayyampalayam S, Bowers JE, McKain MR, McNeal J, Rolf M, Ruzicka DR, Wafula E, Wickett NJ, Wu X, Zhang Y, Wang J, Carpenter EJ, Deyholos MK, Kutchan TM, Chanderbali AS, Soltis PS, Stevenson DW, McCombie R, Pires JC, Wong GK, Soltis DE, Depamphilis CW (2012) A genome triplication associated with early diversification of the core eudicots. Genome Biol 13(1):R3PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Stellari GM, Jaramillo MA, Kramer EM (2004) Evolution of the APETALA3 and PISTILLATA lineages of MADS-box-containing genes in the basal angiosperms. Mol Biol Evol 21(3):506–519PubMedCrossRefGoogle Scholar
  55. 55.
    Chanderbali AS, Albert VA, Leebens-Mack J, Altman NS, Soltis DE, Soltis PS (2009) Transcriptional signatures of ancient floral developmental genetics in avocado (Persea americana; Lauraceae). Proc Natl Acad Sci USA 106(22):8929–8934PubMedCrossRefGoogle Scholar
  56. 56.
    Winter KU, Weiser C, Kaufmann K, Bohne A, Kirchner C, Kanno A, Saedler H, Theissen G (2002) Evolution of class B floral homeotic proteins: obligate heterodimerization originated from homodimerization. Mol Biol Evol 19(5):587–596PubMedCrossRefGoogle Scholar
  57. 57.
    Litt A (2007) An evaluation of A-function: Evidence from the APETALA1 and APETALA2 gene lineages. Int J Plant Sci 168(1):73–91CrossRefGoogle Scholar
  58. 58.
    Litt A, Irish VF (2003) Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage: implications for the evolution of floral development. Genetics 165(2):821–833PubMedGoogle Scholar
  59. 59.
    Zahn LM, Kong H, Leebens-Mack JH, Kim S, Soltis PS, Landherr LL, Soltis DE, dePamphilis CW, Ma H (2005) The evolution of the SEPALLATA subfamily of MADS-box genes: a preangiosperm origin with multiple duplications throughout angiosperm history. Genetics 169(4):2209–2223PubMedCrossRefGoogle Scholar
  60. 60.
    Almeida J, Rocheta M, Galego L (1997) Genetic control of flower shape in Antirrhinum majus. Development 124(7):1387–1392PubMedGoogle Scholar
  61. 61.
    Luo D, Carpenter R, Copsey L, Vincent C, Clark J, Coen E (1999) Control of organ asymmetry in flowers of Antirrhinum. Cell 99(4):367–376PubMedCrossRefGoogle Scholar
  62. 62.
    Luo D, Carpenter R, Vincent C, Copsey L, Coen E (1996) Origin of floral asymmetry in Antirrhinum. Nature 383(6603):794–799PubMedCrossRefGoogle Scholar
  63. 63.
    Howarth DG, Donoghue MJ (2006) Phylogenetic analysis of the “ECE” (CYC/TB1) clade reveals duplications predating the core eudicots. Proc Natl Acad Sci USA 103(24):9101–9106PubMedCrossRefGoogle Scholar
  64. 64.
    Wendel JF, Flagel LE, Adams KL (2012) Jeans, genes, and genomes: cotton as a model for studying polyploidy. In: Soltis PS, Soltis DE (eds) Polyploidy and genome evolution. Springer, Heidelberg, pp 181–208CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2014

Authors and Affiliations

  1. 1.Florida Museum of Natural HistoryUniversity of FloridaGainesvilleUSA
  2. 2.Department of BiologyUniversity of FloridaGainesvilleUSA

Personalised recommendations