Stable Isotope Labeling Methods in Protein Profiling

  • Johan Lengqvist
  • AnnSofi Sandberg
Part of the Methods in Molecular Biology book series (MIMB, volume 1023)


Mass spectrometry (MS) analysis of peptides and proteins has evolved dramatically over the last 20 years. Improvement of MS instrumentation, computational data analysis, and the availability of complete sequence databases for many species have made large-scale proteomics analyses possible. The measurement of global protein abundance by quantitative mass spectrometry has the potential to increase both speed and impact of biological and clinical research. However, to be able to detect and identify potential biomarkers, reproducible and accurate quantification is essential.

The following chapter describes how to perform quantitative protein profiling using stable isotope labeling methods. Throughout, there is a focus on guidance in selection of an appropriate labeling strategy. With that in mind, we have included a section on acquisition and understanding of the liquid chromatography-mass spectrometry (LC-MS) data format.

Further, we describe the different stable isotope labeling methods and their pros and cons. We start by giving an overview of the overall quantitative proteomics workflow in which extracting relevant biological information from the acquired data is the ultimate goal.

Key words

Mass spectrometry Quantification Stable isotope labeling 


  1. 1.
    Aebersold R (2009) A stress test for mass spectrometry-based proteomics. Nat Methods 6:411–412PubMedCrossRefGoogle Scholar
  2. 2.
    Nilsson T, Mann M, Aebersold R, Yates JR III, Bairoch A, Bergeron JJ (2010) Mass spectrometry in high-throughput proteomics: ready for the big time. Nat Methods 7:681–685PubMedCrossRefGoogle Scholar
  3. 3.
    Nagaraj N, Kulak NA, Cox J, Neuhauser N, Mayr K, Hoerning O, Vorm O, Mann M (2012) System-wide perturbation analysis with nearly complete coverage of the yeast proteome by single-shot ultra HPLC runs on a bench top Orbitrap. Mol Cell Proteomics 11(M111):013722PubMedGoogle Scholar
  4. 4.
    Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567PubMedCrossRefGoogle Scholar
  5. 5.
    Reiter L, Claassen M, Schrimpf SP, Jovanovic M, Schmidt A, Buhmann JM, Hengartner MO, Aebersold R (2009) Protein identification false discovery rates for very large proteomics data sets generated by tandem mass spectrometry. Mol Cell Proteomics 8:2405–2417PubMedCrossRefGoogle Scholar
  6. 6.
    Forshed J, Pernemalm M, Branca RM, Sandberg A, Lehtiö J (2011) Enhanced information and improved accuracy from shotgun proteomics by protein quantification based on peptide quality control (PQPQ). Mol Cell Proteomics 10(10):4Google Scholar
  7. 7.
    Zhang G, Fenyo D, Neubert TA (2009) Evaluation of the variation in sample preparation for comparative proteomics using stable isotope labeling by amino acids in cell culture. J Proteome Res 8:1285–1292PubMedCrossRefGoogle Scholar
  8. 8.
    Ibarrola N, Molina H, Iwahori A, Pandey A (2004) A novel proteomic approach for specific identification of tyrosine kinase substrates using [13C]tyrosine. J Biol Chem 279:15805–15813PubMedCrossRefGoogle Scholar
  9. 9.
    Martinovic S, Veenstra TD, Anderson GA, Pasa-Tolic L, Smith RD (2002) Selective incorporation of isotopically labeled amino acids for identification of intact proteins on a proteome-wide level. J Mass Spectrom 37:99–107PubMedCrossRefGoogle Scholar
  10. 10.
    Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386PubMedCrossRefGoogle Scholar
  11. 11.
    Ong SE, Kratchmarova I, Mann M (2003) Properties of 13C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). J Proteome Res 2:173–181PubMedCrossRefGoogle Scholar
  12. 12.
    Bendall SC, Hughes C, Stewart MH, Doble B, Bhatia M, Lajoie GA (2008) Prevention of amino acid conversion in SILAC experiments with embryonic stem cells. Mol Cell Proteomics 7:1587–1597PubMedCrossRefGoogle Scholar
  13. 13.
    Kruger M, Moser M, Ussar S, Thievessen I, Luber CA, Forner F, Schmidt S, Zanivan S, Fassler R, Mann M (2008) SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell 134:353–364PubMedCrossRefGoogle Scholar
  14. 14.
    Sury MD, Chen JX, Selbach M (2010) The SILAC fly allows for accurate protein quantification in vivo. Mol Cell Proteomics 9:2173–2183PubMedCrossRefGoogle Scholar
  15. 15.
    Gouw JW, Krijgsveld J, Heck AJ (2010) Quantitative proteomics by metabolic labeling of model organisms. Mol Cell Proteomics 9:11–24PubMedCrossRefGoogle Scholar
  16. 16.
    Geiger T, Cox J, Ostasiewicz P, Wisniewski JR, Mann M (2010) Super-SILAC mix for quantitative proteomics of human tumor tissue. Nat Methods 7:383–385PubMedCrossRefGoogle Scholar
  17. 17.
    Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999PubMedCrossRefGoogle Scholar
  18. 18.
    Schmidt A, Kellermann J, Lottspeich F (2005) A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics 5:4–15PubMedCrossRefGoogle Scholar
  19. 19.
    Maccarrone G, Turck CW, Martins-de-Souza D (2010) Shotgun mass spectrometry workflow combining IEF and LC-MALDI-TOF/TOF. Protein J 29:99–102PubMedCrossRefGoogle Scholar
  20. 20.
    Turtoi A, Mazzucchelli GD, De Pauw E (2010) Isotope coded protein label quantification of serum proteins—comparison with the label-free LC-MS and validation using the MRM approach. Talanta 80:1487–1495PubMedCrossRefGoogle Scholar
  21. 21.
    Kellermann J (2008) ICPL – isotope-coded protein label. In: Posch A (ed) 2D PAGE: sample preparation and fractionation. Humana, Totowa, NJ, pp 113–123CrossRefGoogle Scholar
  22. 22.
    Pratt JM, Simpson DM, Doherty MK, Rivers J, Gaskell SJ, Beynon RJ (2006) Multiplexed absolute quantification for proteomics using concatenated signature peptides encoded by QconCAT genes. Nat Protoc 1:1029–1043PubMedCrossRefGoogle Scholar
  23. 23.
    Rivers J, Simpson DM, Robertson DH, Gaskell SJ, Beynon RJ (2007) Absolute multiplexed quantitative analysis of protein expression during muscle development using QconCAT. Mol Cell Proteomics 6:1416–1427PubMedCrossRefGoogle Scholar
  24. 24.
    Eyers CE, Simpson DM, Wong SC, Beynon RJ, Gaskell SJ (2008) QCAL–a novel standard for assessing instrument conditions for proteome analysis. J Am Soc Mass Spectrom 19:1275–1280PubMedCrossRefGoogle Scholar
  25. 25.
    Wiese S, Reidegeld KA, Meyer HE, Warscheid B (2007) Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research. Proteomics 7:340–350PubMedCrossRefGoogle Scholar
  26. 26.
    Prudova A, auf dem Keller U, Butler GS, Overall CM (2010) Multiplex N-terminome analysis of MMP-2 and MMP-9 substrate degradomes by iTRAQ-TAILS quantitative proteomics. Mol Cell Proteomics 9:894–911PubMedCrossRefGoogle Scholar
  27. 27.
    auf dem Keller U, Prudova A, Gioia M, Butler GS, Overall CM (2010) A statistics-based platform for quantitative N-terminome analysis and identification of protease cleavage products. Mol Cell Proteomics 9:912–927PubMedCrossRefGoogle Scholar
  28. 28.
    Mirgorodskaya OA, Kozmin YP, Titov MI, Körner R, Sönksen CP, Roepstorff P (2000) Quantitation of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry using 18O-labeled internal standards. Rapid Commun Mass Spectrom 14:1226–1232PubMedCrossRefGoogle Scholar
  29. 29.
    Fenselau C, Yao X (2009) 18O2-Labeling in quantitative proteomic strategies: a status report. J Proteome Res 8:2140–2143PubMedCrossRefGoogle Scholar
  30. 30.
    Petritis BO, Qian W-J, Camp DG, Smith RD (2009) A simple procedure for effective quenching of trypsin activity and prevention of 18O-labeling back-exchange. J Proteome Res 8:2157–2163PubMedCrossRefGoogle Scholar
  31. 31.
    Sevinsky JR, Brown KJ, Cargile BJ, Bundy JL, Stephenson JL Jr (2007) Minimizing back exchange in 18O/16O quantitative proteomics experiments by incorporation of immobilized trypsin into the initial digestion step. Anal Chem 79:2158–2162PubMedCrossRefGoogle Scholar
  32. 32.
    Ji C, Guo N, Li L (2005) Differential dimethyl labeling of N-termini of peptides after guanidination for proteome analysis. J Proteome Res 4:2099–2108PubMedCrossRefGoogle Scholar
  33. 33.
    Boersema PJ, Aye TT, van Veen TA, Heck AJ, Mohammed S (2008) Triplex protein quantification based on stable isotope labeling by peptide dimethylation applied to cell and tissue lysates. Proteomics 8:4624–4632PubMedCrossRefGoogle Scholar
  34. 34.
    Boersema PJ, Raijmakers R, Lemeer S, Mohammed S, Heck AJ (2009) Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat Protoc 4:484–494PubMedCrossRefGoogle Scholar
  35. 35.
    Boersema PJ, Foong LY, Ding VM, Lemeer S, van Breukelen B, Philp R, Boekhorst J, Snel B, den Hertog J, Choo AB, Heck AJ (2010) In-depth qualitative and quantitative profiling of tyrosine phosphorylation using a combination of phosphopeptide immunoaffinity purification and stable isotope dimethyl labeling. Mol Cell Proteomics 9:84–99PubMedCrossRefGoogle Scholar
  36. 36.
    Raijmakers R, Heck AJ, Mohammed S (2009) Assessing biological variation and protein processing in primary human leukocytes by automated multiplex stable isotope labeling coupled to 2 dimensional peptide separation. Mol Biosyst 5:992–1003PubMedCrossRefGoogle Scholar
  37. 37.
    Kleifeld O, Doucet A, auf dem Keller U, Prudova A, Schilling O, Kainthan RK, Starr AE, Foster LJ, Kizhakkedathu JN, Overall CM (2010) Isotopic labeling of terminal amines in complex samples identifies protein N-termini and protease cleavage products. Nat Biotechnol 28:281–288PubMedCrossRefGoogle Scholar
  38. 38.
    Mortensen P, Gouw JW, Olsen JV, Ong S-E, Rigbolt KTG, Bunkenborg J, Cox JR, Foster LJ, Heck AJR, Blagoev B, Andersen JS, Mann M (2009) MSQuant, an open source platform for mass spectrometry-based quantitative proteomics. J Proteome Res 9:393–403CrossRefGoogle Scholar
  39. 39.
    Bellew M, Coram M, Fitzgibbon M, Igra M, Randolph T, Wang P, May D, Eng J, Fang R, Lin C, Chen J, Goodlett D, Whiteaker J, Paulovich A, McIntosh M (2006) A suite of algorithms for the comprehensive analysis of complex protein mixtures using high-resolution LC-MS. Bioinformatics 22:1902–1909PubMedCrossRefGoogle Scholar
  40. 40.
    Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372PubMedCrossRefGoogle Scholar
  41. 41.
    Karp NA, Huber W, Sadowski PG, Charles PD, Hester SV, Lilley KS (2010) Addressing accuracy and precision issues in iTRAQ quantitation. Mol Cell Proteomics 9:1885–1897PubMedCrossRefGoogle Scholar
  42. 42.
    Pichler P, Kocher T, Holzmann J, Mazanek M, Taus T, Ammerer G, Mechtler K (2010) Peptide labeling with isobaric tags yields higher identification rates using iTRAQ 4-plex compared to TMT 6-plex and iTRAQ 8-plex on LTQ Orbitrap. Anal Chem 82:6549–6558PubMedCrossRefGoogle Scholar
  43. 43.
    Pottiez G, Wiederin J, Fox HS, Ciborowski P (2012) Comparison of 4-plex to 8-plex iTRAQ quantitative measurements of proteins in human plasma samples. J Proteome Res 11:3774–3781PubMedCrossRefGoogle Scholar
  44. 44.
    Pachl F, Fellenberg K, Wagner C, Kuster B (2012) Ultra-high intra-spectrum mass accuracy enables unambiguous identification of fragment reporter ions in isobaric multiplexed quantitative proteomics. Proteomics 12:1328–1332PubMedCrossRefGoogle Scholar
  45. 45.
    Ow SY, Salim M, Noirel J, Evans C, Wright PC (2011) Minimising iTRAQ ratio compression through understanding LC-MS elution dependence and high-resolution HILIC fractionation. Proteomics 11:2341–2346PubMedCrossRefGoogle Scholar
  46. 46.
    Dayon L, Pasquarello C, Hoogland C, Sanchez JC, Scherl A (2010) Combining low- and high-energy tandem mass spectra for optimized peptide quantification with isobaric tags. J Proteomics 73:769–777PubMedCrossRefGoogle Scholar
  47. 47.
    Kocher T, Pichler P, Schutzbier M, Stingl C, Kaul A, Teucher N, Hasenfuss G, Penninger JM, Mechtler K (2009) High precision quantitative proteomics using iTRAQ on an LTQ Orbitrap: a new mass spectrometric method combining the benefits of all. J Proteome Res 8:4743–4752PubMedCrossRefGoogle Scholar
  48. 48.
    Michalski A, Damoc E, Lange O, Denisov E, Nolting D, Muller M, Viner R, Schwartz J, Remes P, Belford M, Dunyach JJ, Cox J, Horning S, Mann M, Makarov A (2012) Ultra high resolution linear ion trap orbitrap mass spectrometer (orbitrap elite) facilitates top down LC MS/MS and versatile peptide fragmentation modes. Mol Cell Proteomics 11(O111):013698PubMedGoogle Scholar
  49. 49.
    Ow SY, Cardona T, Taton A, Magnuson A, Lindblad P, Stensjo K, Wright PC (2008) Quantitative shotgun proteomics of enriched heterocysts from Nostoc sp. PCC 7120 using 8-plex isobaric peptide tags. J Proteome Res 7:1615–1628PubMedCrossRefGoogle Scholar
  50. 50.
    Engmann O, Campbell J, Ward M, Giese KP, Thompson AJ (2010) Comparison of a protein-level and peptide-level labeling strategy for quantitative proteomics of synaptosomes using isobaric tags. J Proteome Res 9:2725–2733PubMedCrossRefGoogle Scholar
  51. 51.
    Dayon L, Hainard A, Licker V, Turck N, Kuhn K, Hochstrasser DF, Burkhard PR, Sanchez JC (2008) Relative quantification of proteins in human cerebrospinal fluids by MS/MS using 6-plex isobaric tags. Anal Chem 80:2921–2931PubMedCrossRefGoogle Scholar
  52. 52.
    Dayon L, Turck N, Kienle S, Schulz-Knappe P, Hochstrasser DF, Scherl A, Sanchez JC (2010) Isobaric tagging-based selection and quantitation of cerebrospinal fluid tryptic peptides with reporter calibration curves. Anal Chem 82:848–858PubMedCrossRefGoogle Scholar
  53. 53.
    Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169PubMedCrossRefGoogle Scholar
  54. 54.
    Ow SY, Salim M, Noirel J, Evans C, Rehman I, Wright PC (2009) iTRAQ underestimation in simple and complex mixtures: “the good, the bad and the ugly”. J Proteome Res 8:5347–5355PubMedCrossRefGoogle Scholar
  55. 55.
    Addona TA, Abbatiello SE, Schilling B, Skates SJ, Mani DR, Bunk DM, Spiegelman CH, Zimmerman LJ, Ham A-JL, Keshishian H, Hall SC, Allen S, Blackman RK, Borchers CH, Buck C, Cardasis HL, Cusack MP, Dodder NG, Gibson BW, Held JM, Hiltke T, Jackson A, Johansen EB, Kinsinger CR, Li J, Mesri M, Neubert TA, Niles RK, Pulsipher TC, Ransohoff D, Rodriguez H, Rudnick PA, Smith D, Tabb DL, Tegeler TJ, Variyath AM, Vega-Montoto LJ, Wahlander A, Waldemarson S, Wang M, Whiteaker JR, Zhao L, Anderson NL, Fisher SJ, Liebler DC, Paulovich AG, Regnier FE, Tempst P, Carr SA (2009) Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma. Nat Biotechnol 27:633–641PubMedCrossRefGoogle Scholar
  56. 56.
    Fortin T, Salvador A, Charrier JP, Lenz C, Bettsworth F, Lacoux X, Choquet-Kastylevsky G, Lemoine J (2009) Multiple reaction monitoring cubed for protein quantification at the low nanogram/milliliter level in nondepleted human serum. Anal Chem 81:9343–9352PubMedCrossRefGoogle Scholar
  57. 57.
    Keshishian H, Addona T, Burgess M, Mani DR, Shi X, Kuhn E, Sabatine MS, Gerszten RE, Carr SA (2009) Quantification of ­cardiovascular biomarkers in patient plasma by targeted mass spectrometry and stable isotope dilution. Mol Cell Proteomics 8:2339–2349PubMedCrossRefGoogle Scholar
  58. 58.
    Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1:845–867PubMedCrossRefGoogle Scholar
  59. 59.
    Anderson L, Hunter CL (2006) Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol Cell Proteomics 5:573–588PubMedGoogle Scholar
  60. 60.
    Keshishian H, Addona T, Burgess M, Kuhn E, Carr SA (2007) Quantitative, multiplexed assays for low abundance proteins in plasma by targeted mass spectrometry and stable isotope dilution. Mol Cell Proteomics 6:2212–2229PubMedCrossRefGoogle Scholar
  61. 61.
    Anderson NL, Anderson NG, Haines LR, Hardie DB, Olafson RW, Pearson TW (2004) Mass spectrometric quantitation of peptides and proteins using stable isotope standards and capture by anti-peptide antibodies (SISCAPA). J Proteome Res 3:235–244PubMedCrossRefGoogle Scholar
  62. 62.
    Kuhn E, Addona T, Keshishian H, Burgess M, Mani DR, Lee RT, Sabatine MS, Gerszten RE, Carr SA (2009) Developing multiplexed assays for troponin I and interleukin-33 in plasma by peptide immunoaffinity enrichment and targeted mass spectrometry. Clin Chem 55:1108–1117PubMedCrossRefGoogle Scholar
  63. 63.
    Whiteaker JR, Zhao L, Anderson L, Paulovich AG (2010) An automated and multiplexed method for high throughput peptide immunoaffinity enrichment and multiple reaction monitoring mass spectrometry-based quantification of protein biomarkers. Mol Cell Proteomics 9:184–196PubMedCrossRefGoogle Scholar
  64. 64.
    Schoenherr RM, Zhao L, Whiteaker JR, Feng LC, Li L, Liu L, Liu X, Paulovich AG (2010) Automated screening of monoclonal antibodies for SISCAPA assays using a magnetic bead processor and liquid chromatography-selected reaction monitoring-mass spectrometry. J Immunol Methods 353:49–61PubMedCrossRefGoogle Scholar
  65. 65.
    Lange V, Picotti P, Domon B, Aebersold R (2008) Selected reaction monitoring for quantitative proteomics: a tutorial. Mol Syst Biol 4:222PubMedCrossRefGoogle Scholar
  66. 66.
    Picotti P, Lam H, Campbell D, Deutsch EW, Mirzaei H, Ranish J, Domon B, Aebersold R (2008) A database of mass spectrometric assays for the yeast proteome. Nat Methods 5:913–914PubMedCrossRefGoogle Scholar
  67. 67.
    Picotti P, Rinner O, Stallmach R, Dautel F, Farrah T, Domon B, Wenschuh H, Aebersold R (2010) High-throughput generation of selected reaction-monitoring assays for proteins and proteomes. Nat Methods 7:43–46PubMedCrossRefGoogle Scholar
  68. 68.
    Wilm M, Mann M (1996) Analytical properties of the nanoelectrospray ion source. Anal Chem 68:1–8PubMedCrossRefGoogle Scholar
  69. 69.
    Craig R, Beavis RC (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20:1466–1467PubMedCrossRefGoogle Scholar
  70. 70.
    Colinge J, Masselot A, Giron M, Dessingy T, Magnin J (2003) OLAV: towards high-throughput tandem mass spectrometry data identification. Proteomics 3:1454–1463PubMedCrossRefGoogle Scholar
  71. 71.
    Boja ES, Phillips D, French SA, Harris RA, Balaban RS (2009) Quantitative mitochondrial phosphoproteomics using iTRAQ on an LTQ-Orbitrap with high energy collision dissociation. J Proteome Res 8:4665–4675PubMedCrossRefGoogle Scholar
  72. 72.
    Phanstiel D, Unwin R, McAlister GC, Coon JJ (2009) Peptide quantification using 8-plex isobaric tags and electron transfer dissociation tandem mass spectrometry. Anal Chem 81:1693–1698PubMedCrossRefGoogle Scholar
  73. 73.
    Phanstiel D, Zhang Y, Marto JA, Coon JJ (2008) Peptide and protein quantification using iTRAQ with electron transfer dissociation. J Am Soc Mass Spectrom 19:1255–1262PubMedCrossRefGoogle Scholar
  74. 74.
    Bantscheff M, Boesche M, Eberhard D, Matthieson T, Sweetman G, Kuster B (2008) Robust and sensitive iTRAQ quantification on an LTQ Orbitrap mass spectrometer. Mol Cell Proteomics 7:1702–1713PubMedCrossRefGoogle Scholar
  75. 75.
    Savitski MM, Fischer F, Mathieson T, Sweetman G, Lang M, Bantscheff M (2010) Targeted data acquisition for improved reproducibility and robustness of proteomic mass spectrometry assays. J Am Soc Mass Spectrom 21:1668–1679PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Johan Lengqvist
    • 1
    • 2
  • AnnSofi Sandberg
    • 3
  1. 1.Biopharmaceutical Research Unit, Department of Protein ScienceNovo Nordisk A/SMåløvDenmark
  2. 2.Proteomics Core Faciltiy, Sahlgrenska AcademyGothenburg UniversityGothenburgSweden
  3. 3.Science for Life Laboratory, Department of Oncology–PathologyKarolinska InstitutetStockholmSweden

Personalised recommendations