Temperature-Induced Transitions in Disordered Proteins Probed by NMR Spectroscopy

  • Magnus Kjaergaard
  • Flemming M. Poulsen
  • Birthe B. KragelundEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 896)


Intrinsically disordered proteins are abundant in nature and perform many important physiological functions. Multidimensional NMR spectroscopy has been crucial for the understanding of the conformational properties of disordered proteins and is increasingly used to probe their conformational ensembles. Compared to folded proteins, disordered proteins are more malleable and more easily perturbed by environmental factors. Accordingly, the experimental conditions and especially the temperature modify the structural and functional properties of disordered proteins. NMR spectroscopy allows analysis of temperature-induced structural changes at residue resolution using secondary chemical shift analysis, paramagnetic relaxation enhancement, and residual dipolar couplings. This chapter discusses practical aspects of NMR studies of temperature-induced structural changes in disordered proteins.

Key words

Residual structure Polyproline II Chemical shift Random coil Transient helicity 



Gitte Wolfsberg Haxholm and Simon Erlendsson are thanked for critical comments on this manuscript.


  1. 1.
    Uversky VN (2009) Intrinsically disordered proteins and their environment: effects of strong denaturants, temperature, pH, counter ions, membranes, binding partners, osmolytes, and macromolecular crowding. Protein J 28(7–8):305–325PubMedCrossRefGoogle Scholar
  2. 2.
    Hsu ST, Bertoncini CW, Dobson CM (2009) Use of protonless NMR spectroscopy to alleviate the loss of information resulting from exchange-broadening. J Am Chem Soc 131(21):7222–7223PubMedCrossRefGoogle Scholar
  3. 3.
    Jaenicke R, Bohm G (1998) The stability of proteins in extreme environments. Curr Opin Struct Biol 8(6):738–748PubMedCrossRefGoogle Scholar
  4. 4.
    Jaenicke R (2000) Do ultrastable proteins from hyperthermophiles have high or low conformational rigidity? Proc Natl Acad Sci USA 97(7):2962–2964PubMedCrossRefGoogle Scholar
  5. 5.
    Xue B, Williams RW, Oldfield CJ, Dunker AK, Uversky VN (2010) Archaic chaos: intrinsically disordered proteins in Archaea. BMC Syst Biol 4 Suppl 1:S1Google Scholar
  6. 6.
    Burra PV, Kalmar L, Tompa P (2010) Reduction in structural disorder and functional complexity in the thermal adaptation of prokaryotes. PLoS One 5(8):e12069PubMedCrossRefGoogle Scholar
  7. 7.
    Jarvet J, Damberg P, Danielsson J, Johansson I, Eriksson LE, Graslund A (2003) A left-handed 3(1) helical conformation in the Alzheimer Abeta(12-28) peptide. FEBS Lett 555(2):371–374PubMedCrossRefGoogle Scholar
  8. 8.
    Uversky VN, Li J, Fink AL (2001) Evidence for a partially folded intermediate in alpha-synuclein fibril formation. J Biol Chem 276(14):10737–10744PubMedCrossRefGoogle Scholar
  9. 9.
    Dawson R, Muller L, Dehner A, Klein C, Kessler H, Buchner J (2003) The N-terminal domain of p53 is natively unfolded. J Mol Biol 332(5):1131–1141PubMedCrossRefGoogle Scholar
  10. 10.
    Gast K, Zirwer D, Damaschun G (2003) Are there temperature-dependent structural transitions in the “intrinsically unstructured” protein prothymosin alpha? Eur Biophys J 31(8):586–594PubMedGoogle Scholar
  11. 11.
    Jeganathan S, von Bergen M, Mandelkow EM, Mandelkow E (2008) The natively unfolded character of tau and its aggregation to Alzheimer-like paired helical filaments. Biochemistry 47(40):10526–10539PubMedCrossRefGoogle Scholar
  12. 12.
    Sanchez-Puig N, Veprintsev DB, Fersht AR (2005) Human full-length Securin is a natively unfolded protein. Protein Sci 14(6):1410–1418PubMedCrossRefGoogle Scholar
  13. 13.
    Malm J, Jonsson M, Frohm B, Linse S (2007) Structural properties of semenogelin I. FEBS J 274(17):4503–4510PubMedCrossRefGoogle Scholar
  14. 14.
    Kjaergaard M, Norholm AB, Hendus-Altenburger R, Pedersen SF, Poulsen FM, Kragelund BB (2010) Temperature-dependent structural changes in intrinsically disordered proteins: formation of alpha-helices or loss of polyproline II? Protein Sci 19(8):1555–1564PubMedCrossRefGoogle Scholar
  15. 15.
    Yang WY, Larios E, Gruebele M (2003) On the extended beta-conformation propensity of polypeptides at high temperature. J Am Chem Soc 125(52):16220–16227PubMedCrossRefGoogle Scholar
  16. 16.
    Nettels D, Muller-Spath S, Kuster F, Hofmann H, Haenni D, Ruegger S, Reymond L, Hoffmann A, Kubelka J, Heinz B, Gast K, Best RB, Schuler B (2009) Single-molecule spectroscopy of the temperature-induced collapse of unfolded proteins. Proc Natl Acad Sci USA 106(49):20740–20745PubMedCrossRefGoogle Scholar
  17. 17.
    Shi Z, Olson CA, Rose GD, Baldwin RL, Kallenbach NR (2002) Polyproline II structure in a sequence of seven alanine residues. Proc Natl Acad Sci USA 99(14):9190–9195PubMedCrossRefGoogle Scholar
  18. 18.
    Dyson HJ, Wright PE (2002) Insights into the structure and dynamics of unfolded proteins from nuclear magnetic resonance. Adv Protein Chem 62:311–340PubMedCrossRefGoogle Scholar
  19. 19.
    Mittag T, Forman-Kay JD (2007) Atomic-level characterization of disordered protein ensembles. Curr Opin Struct Biol 17(1):3–14PubMedCrossRefGoogle Scholar
  20. 20.
    Eliezer D (2009) Biophysical characterization of intrinsically disordered proteins. Curr Opin Struct Biol 19(1):23–30PubMedCrossRefGoogle Scholar
  21. 21.
    Eliezer D (2007) Characterizing residual structure in disordered protein States using nuclear magnetic resonance. Methods Mol Biol 350:49–67PubMedGoogle Scholar
  22. 22.
    Pickford AR, O’Leary JM (2004) Isotopic labeling of recombinant proteins from the methylotrophic yeast Pichia pastoris. Methods Mol Biol 278:17–33PubMedGoogle Scholar
  23. 23.
    Dawson RMC, Elliot DC, Elliot WH, Jones KM (1986) Data for biochemical research, 3rd edn. Oxford University Press, Oxford, UK.Google Scholar
  24. 24.
    Voehler MW, Collier G, Young JK, Stone MP, Germann MW (2006) Performance of cryogenic probes as a function of ionic strength and sample tube geometry. J Magn Reson 183(1):102–109PubMedCrossRefGoogle Scholar
  25. 25.
    Kelly AE, Ou HD, Withers R, Dotsch V (2002) Low-conductivity buffers for high-sensitivity NMR measurements. J Am Chem Soc 124(40):12013–12019PubMedCrossRefGoogle Scholar
  26. 26.
    Teilum K, Kragelund BB, Poulsen FM (2005) Application of hydrogen exchange kinetics to studies of protein folding. Protein folding handbook. Wiley-VCH Verlag GmbH. doi: 10.1002/9783527619498.ch18
  27. 27.
    Kjaergaard M, Iešmantavičius V, Poulsen FM (in press) The interplay between transient α-helix formation and side chain rotamer distributions in disordered proteins probed by methyl chemical shifts. Protein Sci 20(12):2023–34.Google Scholar
  28. 28.
    Wishart DS, Bigam CG, Yao J, Abildgaard F, Dyson HJ, Oldfield E, Markley JL, Sykes BD (1995) 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR 6(2):135–140PubMedCrossRefGoogle Scholar
  29. 29.
    Zhang H, Neal S, Wishart DS (2003) RefDB: a database of uniformly referenced protein chemical shifts. J Biomol NMR 25(3):173–195PubMedCrossRefGoogle Scholar
  30. 30.
    Wang Y, Wishart DS (2005) A simple method to adjust inconsistently referenced 13C and 15N chemical shift assignments of proteins. J Biomol NMR 31(2):143–148PubMedCrossRefGoogle Scholar
  31. 31.
    Findeisen M, Brand T, Berger S (2007) A 1H-NMR thermometer suitable for cryoprobes. Magn Reson Chem 45(2):175–178PubMedCrossRefGoogle Scholar
  32. 32.
    Grzesiek S, Bax A (1992) Improved 3D triple-resonance NMR techniques applied to a 31-kDa protein. J Magn Reson 96(2):432–440Google Scholar
  33. 33.
    Ikura M, Kay LE, Bax A (1990) A novel approach for sequential assignment of 1H, 13C, and 15N spectra of proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin. Biochemistry 29(19):4659–4667PubMedCrossRefGoogle Scholar
  34. 34.
    Wittekind M, Mueller L (1993) Hncacb, a high-sensitivity 3D NMR experiment to correlate amide-proton and nitrogen resonances with the alpha-carbon and beta-carbon resonances in proteins. J Magn Reson B 101(2):201–205CrossRefGoogle Scholar
  35. 35.
    Kay LE, Xu GY, Yamazaki T (1994) Enhanced-sensitivity triple-resonance spectroscopy with minimal H2O saturation. J Magn Reson A 109(1):129–133CrossRefGoogle Scholar
  36. 36.
    Grzesiek S, Bax A (1992) Correlating backbone amide and side-chain resonances in larger proteins by multiple relayed triple resonance NMR. J Am Chem Soc 114(16):6291–6293CrossRefGoogle Scholar
  37. 37.
    Panchal SC, Bhavesh NS, Hosur RV (2001) Improved 3D triple resonance experiments, HNN and HN(C)N, for HN and 15N sequential correlations in (13C, 15N) labeled proteins: application to unfolded proteins. J Biomol NMR 20(2):135–147PubMedCrossRefGoogle Scholar
  38. 38.
    Ikura M, Kay LE, Bax A (1990) A novel-approach for sequential assignment of H-1, C-13, and N-15 spectra of larger proteins – heteronuclear triple-resonance 3-dimensional NMR-spectroscopy – application to calmodulin. Biochemistry 29(19):4659–4667PubMedCrossRefGoogle Scholar
  39. 39.
    Yamazaki T, Muhandiram R, Kay LE (1994) NMR experiments for the measurement of carbon relaxation properties in highly enriched, uniformly C-13, N-15-labeled proteins – application to C-13(alpha) carbons. J Am Chem Soc 116(18):8266–8278CrossRefGoogle Scholar
  40. 40.
    Kjaergaard M, Brander S, Poulsen FM (2011) Random coil chemical shift for intrinsically disordered proteins: effects of temperature and pH. J Biomol NMR 49(2):139–149PubMedCrossRefGoogle Scholar
  41. 41.
    Mantylahti S, Aitio O, Hellman M, Permi P (2010) HA-detected experiments for the backbone assignment of intrinsically disordered proteins. J Biomol NMR 47(3):171–181PubMedCrossRefGoogle Scholar
  42. 42.
    Bermel W, Bertini I, Felli IC, Lee YM, Luchinat C, Pierattelli R (2006) Protonless NMR experiments for sequence-specific assignment of backbone nuclei in unfolded proteins. J Am Chem Soc 128(12):3918–3919PubMedCrossRefGoogle Scholar
  43. 43.
    Ebert MO, Bae SH, Dyson HJ, Wright PE (2008) NMR relaxation study of the complex formed between CBP and the activation domain of the nuclear hormone receptor coactivator ACTR. Biochemistry 47(5):1299–1308PubMedCrossRefGoogle Scholar
  44. 44.
    Danielsson J, Liljedahl L, Barany-Wallje E, Sonderby P, Kristensen LH, Martinez-Yamout MA, Dyson HJ, Wright PE, Poulsen FM, Maler L, Graslund A, Kragelund BB (2008) The intrinsically disordered RNR inhibitor Sml1 is a dynamic dimer. Biochemistry 47(50):13428–13437PubMedCrossRefGoogle Scholar
  45. 45.
    Wishart DS, Sykes BD, Richards FM (1991) Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J Mol Biol 222(2):311–333PubMedCrossRefGoogle Scholar
  46. 46.
    Spera S, Bax A (1991) Empirical correlation between protein backbone conformation and C.alpha. and C.beta. 13C nuclear magnetic resonance chemical shifts. J Am Chem Soc 113(14):5490–5492CrossRefGoogle Scholar
  47. 47.
    Kim HY, Heise H, Fernandez CO, Baldus M, Zweckstetter M (2007) Correlation of amyloid fibril beta-structure with the unfolded state of alpha-synuclein. Chembiochem 8(14):1671–1674PubMedCrossRefGoogle Scholar
  48. 48.
    Wu KP, Kim S, Fela DA, Baum J (2008) Characterization of conformational and dynamic properties of natively unfolded human and mouse alpha-synuclein ensembles by NMR: implication for aggregation. J Mol Biol 378(5):1104–1115PubMedCrossRefGoogle Scholar
  49. 49.
    Marsh JA, Singh VK, Jia Z, Forman-Kay JD (2006) Sensitivity of secondary structure propensities to sequence differences between alpha- and gamma-synuclein: implications for fibrillation. Protein Sci 15(12):2795–2804PubMedCrossRefGoogle Scholar
  50. 50.
    Lam SL, Hsu VL (2003) NMR identification of left-handed polyproline type II helices. Biopolymers 69(2):270–281PubMedCrossRefGoogle Scholar
  51. 51.
    Iwadate M, Asakura T, Williamson MP (1999) C alpha and C beta carbon-13 chemical shifts in proteins from an empirical database. J Biomol NMR 13(3):199–211PubMedCrossRefGoogle Scholar
  52. 52.
    Schwarzinger S, Kroon GJ, Foss TR, Wright PE, Dyson HJ (2000) Random coil chemical shifts in acidic 8 M urea: implementation of random coil shift data in NMR view. J Biomol NMR 18(1):43–48PubMedCrossRefGoogle Scholar
  53. 53.
    Wishart DS, Bigam CG, Holm A, Hodges RS, Sykes BD (1995) 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J Biomol NMR 5(1):67–81PubMedCrossRefGoogle Scholar
  54. 54.
    De Simone A, Cavalli A, Hsu ST, Vranken W, Vendruscolo M (2009) Accurate random coil chemical shifts from an analysis of loop regions in native states of proteins. J Am Chem Soc 131(45):16332–16333PubMedCrossRefGoogle Scholar
  55. 55.
    Tamiola K, Acar B, Mulder FA (2010) Sequence-specific random coil chemical shifts of intrinsically disordered proteins. J Am Chem Soc 132(51):18000–18003PubMedCrossRefGoogle Scholar
  56. 56.
    Schwarzinger S, Kroon GJ, Foss TR, Chung J, Wright PE, Dyson HJ (2001) Sequence-dependent correction of random coil NMR chemical shifts. J Am Chem Soc 123(13):2970–2978PubMedCrossRefGoogle Scholar
  57. 57.
    Merutka G, Dyson HJ, Wright PE (1995) ‘Random coil’ 1H chemical shifts obtained as a function of temperature and trifluoroethanol concentration for the peptide series GGXGG. J Biomol NMR 5(1):14–24PubMedCrossRefGoogle Scholar
  58. 58.
    Modig K, Jurgensen VW, Lindorff-Larsen K, Fieber W, Bohr HG, Poulsen FM (2007) Detection of initiation sites in protein folding of the four helix bundle ACBP by chemical shift analysis. FEBS Lett 581(25):4965–4971PubMedCrossRefGoogle Scholar
  59. 59.
    Munoz V, Serrano L (1995) Elucidating the folding problem of helical peptides using empirical parameters. III. Temperature and pH dependence. J Mol Biol 245(3):297–308PubMedCrossRefGoogle Scholar
  60. 60.
    Gillespie JR, Shortle D (1997) Characterization of long-range structure in the denatured state of staphylococcal nuclease. 1. Paramagnetic relaxation enhancement by nitroxide spin labels. J Mol Biol 268(1):158–169PubMedCrossRefGoogle Scholar
  61. 61.
    Gillespie JR, Shortle D (1997) Characterization of long-range structure in the denatured state of staphylococcal nuclease. 2. Distance restraints from paramagnetic relaxation and calculation of an ensemble of structures. J Mol Biol 268(1):170–184PubMedCrossRefGoogle Scholar
  62. 62.
    Teilum K, Kragelund BB, Poulsen FM (2002) Transient structure formation in unfolded acyl-coenzyme A-binding protein observed by site-directed spin labelling. J Mol Biol 324(2):349–357PubMedCrossRefGoogle Scholar
  63. 63.
    Lietzow MA, Jamin M, Dyson HJ, Wright PE (2002) Mapping long-range contacts in a highly unfolded protein. J Mol Biol 322(4):655–662PubMedCrossRefGoogle Scholar
  64. 64.
    Jensen MR, Markwick PR, Meier S, Griesinger C, Zweckstetter M, Grzesiek S, Bernado P, Blackledge M (2009) Quantitative determination of the conformational properties of partially folded and intrinsically disordered proteins using NMR dipolar couplings. Structure 17(9):1169–1185PubMedCrossRefGoogle Scholar
  65. 65.
    Gebel EB, Shortle D (2007) Characterization of denatured proteins using residual dipolar couplings. Methods Mol Biol 350:39–48PubMedGoogle Scholar
  66. 66.
    Rückert M, Otting G (2000) Alignment of biological macromolecules in novel nonionic liquid crystalline media for NMR experiments. J Am Chem Soc 122(32):7793–7797CrossRefGoogle Scholar
  67. 67.
    Fleming K, Matthews S (2004) Media for studies of partially aligned states. Methods Mol Biol 278:79–88PubMedGoogle Scholar
  68. 68.
    Tycko R, Blanco FJ, Ishii Y (2000) Alignment of biopolymers in strained gels: a new way to create detectable dipole–dipole couplings in high-resolution biomolecular NMR. J Am Chem Soc 122(38):9340–9341CrossRefGoogle Scholar
  69. 69.
    Demarest SJ, Martinez-Yamout M, Chung J, Chen H, Xu W, Dyson HJ, Evans RM, Wright PE (2002) Mutual synergistic folding in recruitment of CBP/p300 by p160 nuclear receptor coactivators. Nature 415(6871):549–553PubMedCrossRefGoogle Scholar
  70. 70.
    Demarest SJ, Chung J, Dyson HJ, Wright PE (2002) Assignment of a 15 kDa protein complex formed between the p160 coactivator ACTR and CREB binding protein. J Biomol NMR 22(4):377–378PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Magnus Kjaergaard
    • 1
  • Flemming M. Poulsen
    • 1
  • Birthe B. Kragelund
    • 1
    Email author
  1. 1.Structural Biology and NMR Laboratory, Department of BiologyUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations