Skip to main content

Use of Echinoderm Gametes and Early Embryos for Studying Meiosis and Mitosis

  • Protocol
  • First Online:
Mitosis

Abstract

The early embryos of sea urchins and other echinoderms have served as experimental models for the study of cell division since the nineteenth century. Their rapid development, optical clarity, and ease of manipulation continue to offer advantages for studying spindle assembly and cytokinesis. In the absence of transgenic lines, alternative strategies must be employed to visualize microtubules and actin. Here, we describe methods to visualize actin and microtubule using either purified, recombinant proteins, or probes in in vitro-transcribed mRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hertwig O (1884) Das Problem der Befruchtung une der Isotropie des Eies, eine Theory der Vererbung. Jenaische Zeitschrist 18:276–318

    Google Scholar 

  2. Boveri T (2008) Concerning the origin of malignant tumours by Theodor Boveri. Translated and annotated by Henry Harris. J Cell Sci 121 Suppl 1:1–84

    Google Scholar 

  3. Salmon ED, Segall RR (1980) Calcium-labile mitotic spindles isolated from sea urchin eggs (Lytechinus variegatus). J Cell Biol 86(2):355–365

    Article  CAS  PubMed  Google Scholar 

  4. Pratt MM, Otter T, Salmon ED (1980) Dynein-like Mg2+-ATPase in mitotic spindles isolated from sea urchin embryos (Strongylocentrotus droebachiensis). J Cell Biol 86(3):738–745

    Article  CAS  PubMed  Google Scholar 

  5. Chui KK et al (2000) Roles of two homotetrameric kinesins in sea urchin embryonic cell division. J Biol Chem 275(48):38005–38011

    Article  CAS  PubMed  Google Scholar 

  6. Rogers GC et al (2000) A kinesin-related protein, KRP(180), positions prometaphase spindle poles during early sea urchin embryonic cell division. J Cell Biol 150(3):499–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kashina AS et al (1996) An essential bipolar mitotic motor. Nature 384(6606):225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cole DG et al (1992) Isolation of a sea urchin egg kinesin-related protein using peptide antibodies. J Cell Sci 101(Pt 2):291–301

    Article  CAS  PubMed  Google Scholar 

  9. Wright BD, Scholey JM (1992) Microtubule motors in the early sea urchin embryo. Curr Top Dev Biol 26:71–91

    Article  CAS  PubMed  Google Scholar 

  10. Buster D, Scholey JM (1991) Purification and assay of kinesin from sea urchin eggs and early embryos. J Cell Sci Suppl 14:109–115

    Article  CAS  PubMed  Google Scholar 

  11. Strickland LI, Donnelly EJ, Burgess DR (2005) Induction of cytokinesis is independent of precisely regulated microtubule dynamics. Mol Biol Cell 16(10):4485–4494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Klughammer N et al (2018) Cytoplasmic flows in starfish oocytes are fully determined by cortical contractions. PLoS Comput Biol 14(11):e1006588

    Article  PubMed  PubMed Central  Google Scholar 

  13. Burdyniuk M et al (2018) F-actin nucleated on chromosomes coordinates their capture by microtubules in oocyte meiosis. J Cell Biol 217(8):2661–2674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bischof J et al (2017) A cdk1 gradient guides surface contraction waves in oocytes. Nat Commun 8(1):849

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mori M et al (2014) An Arp2/3 nucleated F-actin shell fragments nuclear membranes at nuclear envelope breakdown in starfish oocytes. Curr Biol 24(12):1421–1428

    Article  CAS  PubMed  Google Scholar 

  16. LĂ©nĂĄrt P et al (2005) A contractile nuclear actin network drives chromosome congression in oocytes. Nature 436(7052):812–818

    Article  PubMed  Google Scholar 

  17. Goryachev AB et al (2016) How to make a static cytokinetic furrow out of traveling excitable waves. Small GTPases 7(2):65–70

    Article  PubMed  PubMed Central  Google Scholar 

  18. von Dassow G (2009) Concurrent cues for cytokinetic furrow induction in animal cells. Trends Cell Biol 19(4):165–173

    Article  Google Scholar 

  19. Bement WM, Benink HA, von Dassow G (2005) A microtubule-dependent zone of active RhoA during cleavage plane specification. J Cell Biol 170(1):91–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Su KC et al (2014) An astral simulacrum of the central spindle accounts for normal, spindle-less, and anucleate cytokinesis in echinoderm embryos. Mol Biol Cell 25(25):4049–4062

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bement WM et al (2015) Activator-inhibitor coupling between Rho signalling and actin assembly makes the cell cortex an excitable medium. Nat Cell Biol 17(11):1471–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hinchcliffe EH et al (1999) Nucleo-cytoplasmic interactions that control nuclear envelope breakdown and entry into mitosis in the sea urchin zygote. J Cell Sci 112(Pt 8):1139–1148

    Article  CAS  PubMed  Google Scholar 

  23. Leonard JD, Ettensohn CA (2007) Analysis of dishevelled localization and function in the early sea urchin embryo. Dev Biol 306(1):50–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shen SS, Steinhardt RA (1979) Intracellular pH and the sodium requirement at fertilisation. Nature 282(5734):87–89

    Article  CAS  PubMed  Google Scholar 

  25. Grainger JL et al (1979) Intracellular pH controls protein synthesis rate in the sea urchine egg and early embryo. Dev Biol 68(2):396–406

    Article  CAS  PubMed  Google Scholar 

  26. Kisielewska J et al (2009) MAP kinase dependent cyclinE/cdk2 activity promotes DNA replication in early sea urchin embryos. Dev Biol 334(2):383–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. SepĂșlveda-RamĂ­rez SP et al (2019) Live-cell fluorescence imaging of echinoderm embryos. Methods Cell Biol 151:379–397

    Article  PubMed  Google Scholar 

  28. Riedl J et al (2008) Lifeact: a versatile marker to visualize F-actin. Nat Methods 5(7):605–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. SepĂșlveda-RamĂ­rez SP et al (2018) Cdc42 controls primary mesenchyme cell morphogenesis in the sea urchin embryo. Dev Biol 437(2):140–151

    Article  PubMed  PubMed Central  Google Scholar 

  30. Adams NL et al (2019) Procuring animals and culturing of eggs and embryos. Methods Cell Biol 150:3–46

    Article  CAS  PubMed  Google Scholar 

  31. Swartz SZ et al (2019) Quiescent cells actively replenish CENP-A nucleosomes to maintain centromere identity and proliferative potential. Dev Cell 51(1):35–48.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jaffe LA, Terasaki M (2004) Quantitative microinjection of oocytes, eggs, and embryos. Methods Cell Biol 74:219–242

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wessel GM, Reich AM, Klatsky PC (2010) Use of sea stars to study basic reproductive processes. Syst Biol Reprod Med 56(3):236–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lucero A et al (2006) A global, myosin light chain kinase-dependent increase in myosin II contractility accompanies the metaphase-anaphase transition in sea urchin eggs. Mol Biol Cell 17(9):4093–4104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shuster CB, Burgess DR (2002) Transitions regulating the timing of cytokinesis in embryonic cells. Curr Biol 12(10):854–858

    Article  CAS  PubMed  Google Scholar 

  36. Chen Q, Nag S, Pollard TD (2012) Formins filter modified actin subunits during processive elongation. J Struct Biol 177(1):32–39

    Article  PubMed  Google Scholar 

  37. Aizawa H, Sameshima M, Yahara I (1997) A green fluorescent protein-actin fusion protein dominantly inhibits cytokinesis, cell spreading, and locomotion in Dictyostelium. Cell Struct Funct 22(3):335–345

    Article  CAS  PubMed  Google Scholar 

  38. Burkel BM, von Dassow G, Bement WM (2007) Versatile fluorescent probes for actin filaments based on the actin-binding domain of utrophin. Cell Motil Cytoskeleton 64(11):822–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Johnson HW, Schell MJ (2009) Neuronal IP3 3-kinase is an F-actin-bundling protein: role in dendritic targeting and regulation of spine morphology. Mol Biol Cell 20(24):5166–5180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Melak M, Plessner M, Grosse R (2017) Actin visualization at a glance. J Cell Sci 130(3):525–530

    PubMed  Google Scholar 

  41. Belin BJ, Goins LM, Mullins RD (2014) Comparative analysis of tools for live cell imaging of actin network architecture. BioArchitecture 4(6):189–202

    Article  PubMed  Google Scholar 

  42. Spracklen AJ et al (2014) The pros and cons of common actin labeling tools for visualizing actin dynamics during Drosophila oogenesis. Dev Biol 393(2):209–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shirai H (1974) Effect of L-phenylalanine on I-methyladenine production and spontaneous oocyte maturation in starfish. Exp Cell Res 87(1):31–38

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors want to thank David Burgess (Boston College) for the Lifeact-GFP plasmid. This work was supported by the National Science Foundation to C.B.S (MCB-1917983) and an American Cancer Society postdoctoral fellowship to S.Z.S. (PF-16-007-01-CCG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles B. Shuster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pal, D., Visconti, F., SepĂșlveda-RamĂ­rez, S.P., Swartz, S.Z., Shuster, C.B. (2022). Use of Echinoderm Gametes and Early Embryos for Studying Meiosis and Mitosis. In: Hinchcliffe, E.H. (eds) Mitosis. Methods in Molecular Biology, vol 2415. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1904-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1904-9_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1903-2

  • Online ISBN: 978-1-0716-1904-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics