Skip to main content

Challenges for Vaccinologists in the First Half of the Twenty-First Century

  • Protocol
  • First Online:
Book cover Vaccine Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2410))

Abstract

The COVID-19 pandemic of 2020–2021 has highlighted the importance of vaccines and vaccination in human health. The pandemic has resulted in social distancing, travel restrictions, decreased trade, high unemployment, commodity price decline, and financial stress that has impacted the global economy. Since December 2020, a massive vaccination campaign is undergoing in every country on the planet to protect against SARS-CoV-2. Vaccination is the cheapest health-care interventions that can save more lives than any other drugs or therapies. Some of the common diseases of the twentieth century including smallpox and polio are seldom reported due to intense vaccination programs that eradicated it. Smallpox is completely eradicated globally; whereas, polio is confined to only a couple of countries. Vaccination has not only improved the health of man but also improved food security by preventing diseases in farm animals and aquacultured fish. Awareness of the principles of immunology and novel vaccines has led to effective vaccination strategies. Climate change could lead to generation of new strains of infectious microorganisms that would require development of novel vaccines. Recent years have seen the increase in incidence of brain-eating amoeba and flesh-eating bacteria (necrotizing fasciitis). There are no vaccines for these diseases. Though vaccination programs have eradicated several diseases and increased the quality of life, there are several diseases that have no effective vaccines. Currently there are no vaccines for cancer, neurodegenerative diseases, autoimmune diseases, as well as infectious diseases like tuberculosis, AIDS, and parasitic diseases including malaria. Spontaneous evolution of pathogenic microorganisms may lead to pandemics that impact the health of not only humanity but also other animals. Hence, the challenge to vaccinologists is the development of novel vaccines and vaccination strategies within limited time period and using minimum resources. In addition, the vaccine developed should be administered globally within a short duration so as to prevent generation of pathogenic variants more lethal than the parent strain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. (2011) Microbiology by numbers. Nat Rev Microbiol 9:628

    Google Scholar 

  2. (2019) Standing up to infectious disease. Nat Microbiol 4(1):1

    Google Scholar 

  3. Plotkin SA (2005) Vaccines: past, present and future. Nat Med 11(4 Suppl):S5–S11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Delany I, Rappuoli R, De Gregorio E (2014) Vaccines for the 21st century. EMBO Mol Med 6:708–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tognotti E (2010) The eradication of smallpox, a success story for modern medicine and public health: what lessons for the future? J Infect Dev Ctries 4(5):264–266

    Article  PubMed  Google Scholar 

  6. World Health Organization, UNICEF (2010) Global immunization data

    Google Scholar 

  7. Nambiar PH, Daza AD, Livornese LL Jr (2016) Clinical impact of vaccine development. Methods Mol Biol 1403:3–39

    Article  PubMed  Google Scholar 

  8. Thomas S, Dilbarova R, Rappuoli R (2016) Future challenges for vaccinologists. Methods Mol Biol 1403:41–55

    Article  PubMed  Google Scholar 

  9. World Health Organization (2008) The top 10 causes of death. Fact sheet no 310

    Google Scholar 

  10. Jones H, Pekins PJ, Kantar L, Sidor I, Ellingwood D, Lichtenwalner A, O'Neal M (2018) Mortality assessment of calf moose (Alces alces) during successive years of winter tick (Dermacentor albipictus) epizootics in New Hampshire and Maine. Can J Zool 97(1):22–30

    Article  Google Scholar 

  11. Peng W, Ma NL, Zhang D, Zhou Q, Yue X, Khoo SC, Yang H, Guan R, Chen H, Zhang X, Wang Y, Wei Z, Suo C, Peng Y, Yang Y, Lam SS, Sonne C (2020) A review of historical and recent locust outbreaks: links to global warming, food security and mitigation strategies. Environ Res 191:110046

    Article  CAS  PubMed  Google Scholar 

  12. Balinda IG, Sugrue DD, Ivers LC (2019) More than malnutrition: a review of the relationship between food insecurity and tuberculosis. Open Forum Infect Dis 6(4):ofz102

    Article  PubMed  PubMed Central  Google Scholar 

  13. Katona P, Katona-Apte J (2008) The interaction between nutrition and infection. Clin Infect Dis 46(10):1582–1588

    Article  PubMed  Google Scholar 

  14. Thomas S (2020) The structure of the membrane protein of SARS-CoV-2 resembles the sugar transporter SemiSWEET. Pathog Immun 5(1):342–363

    Article  PubMed  PubMed Central  Google Scholar 

  15. Thomas S (2021) Mapping the non-structural transmembrane proteins of SARS-CoV-2. J Comput Biol (in press)

    Google Scholar 

  16. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223):497–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang W, Davis BD, Chen SS, Sincuir Martinez JM, Plummer JT, Vail E (2021) Emergence of a novel SARS-CoV-2 variant in Southern California. JAMA 325(13):1324–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Karikó K, Kuo A, Barnathan E (1999) Overexpression of urokinase receptor in mammalian cells following administration of the in vitro transcribed encoding mRNA. Gene Ther 6(6):1092–1100

    Article  PubMed  Google Scholar 

  19. Pardi N, Hogan MJ, Pelc RS, Muramatsu H, Andersen H, DeMaso CR, Dowd KA, Sutherland LL, Scearce RM, Parks R, Wagner W, Granados A, Greenhouse J, Walker M, Willis E, Yu JS, McGee CE, Sempowski GD, Mui BL, Tam YK, Huang YJ, Vanlandingham D, Holmes VM, Balachandran H, Sahu S, Lifton M, Higgs S, Hensley SE, Madden TD, Hope MJ, Karikó K, Santra S, Graham BS, Lewis MG, Pierson TC, Haynes BF, Weissman D (2017) Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature 543(7644):248–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pardi N, Hogan MJ, Porter FW, Weissman D (2018) mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov 17(4):261–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Laczkó D, Hogan MJ, Toulmin SA, Hicks P, Lederer K, Gaudette BT, Castaño D, Amanat F, Muramatsu H, Oguin TH 3rd, Ojha A, Zhang L, Mu Z, Parks R, Manzoni TB, Roper B, Strohmeier S, Tombácz I, Arwood L, Nachbagauer R, Karikó K, Greenhouse J, Pessaint L, Porto M, Putman-Taylor T, Strasbaugh A, Campbell TA, PJC L, Tam YK, Sempowski GD, Farzan M, Choe H, Saunders KO, Haynes BF, Andersen H, Eisenlohr LC, Weissman D, Krammer F, Bates P, Allman D, Locci M, Pardi N (2020) A single immunization with nucleoside-modified mRNA vaccines elicits strong cellular and humoral immune responses against SARS-CoV-2 in mice. Immunity 53(4):724–732.e7

    Article  PubMed  PubMed Central  Google Scholar 

  22. HIV.gov (2020) Global HIV & AIDS statistics - 2020 fact sheet

    Google Scholar 

  23. Barroso J, Leserman J, Harmon JL, Hammill B, Pence BW (2015) Fatigue in HIV-infected people: a three-year observational study. J Pain Symptom Manag 50(1):69–79

    Article  Google Scholar 

  24. Cuevas JM, Geller R, Gario R, Lopez-Aldeguer J, Sanjaun R (2015) Extremely high mutation rate of HIV-1 in vivo. PLoS Biol 13:e1002251

    Article  PubMed  PubMed Central  Google Scholar 

  25. Delannoy A, Poirier M, Bell B (2019) Cat and mouse: HIV transcription in latency, immune evasion and cure/remission strategies. Viruses 11:269

    Article  CAS  PubMed Central  Google Scholar 

  26. Desrosiers RC (1999) Strategies used by human immunodeficiency virus that allow persistent viral replication. Nat Med 5:723–725

    Article  CAS  PubMed  Google Scholar 

  27. Centers for Disease Control and prevention (2013) Viral Hemorrhagic Fevers (VHFs). https://www.cdc.gov/vhf/virus-families/flaviviridae.html

  28. Roossinck M, Zimmer C (2016) Human viruses. In: Virus: an illustrated guide to 101 incredible microbes. Princeton University Press, Princeton, pp 50–97

    Chapter  Google Scholar 

  29. Kaaijk P, Luytjes W (2018) Are we prepared for emerging flaviviruses in Europe? Challenges for vaccination. Hum Vaccin Immunother 14(2):337–344

    Article  PubMed  Google Scholar 

  30. Ishikawa T, Yamanaka A, Konishi E (2014) A review of successful flavivirus vaccines and the problems with those flaviviruses for which vaccines are not yet available. Vaccine 32(12):1326–1337

    Article  CAS  PubMed  Google Scholar 

  31. Hennessey M, Fischer M, Staples JE (2016) Zika virus spreads to new areas — region of the Americas, May 2015–January 2016. MMWR Morb Mortal Wkly Rep 65:55–58

    Article  PubMed  Google Scholar 

  32. Pawitwar SS, Dhar S, Tiwari S et al (2017) Overview on the current status of Zika virus pathogenesis and animal related research. J Neuroimmune Pharmacol 12:371–388

    Article  PubMed  Google Scholar 

  33. Calvet G, Aguiar RS, Melo AS, Sampaio SA, de Filippis I, Fabri A, Araujo ES, de Sequeira PC, de Mendonça MC, de Oliveira L, Tschoeke DA, Schrago CG, Thompson FL, Brasil P, Dos Santos FB, Nogueira RM, Tanuri A, de Filippis AM (2016) Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study. Lancet Infect Dis 16(6):653–660

    Article  PubMed  Google Scholar 

  34. Driggers RW, Ho CY, Korhonen EM, Kuivanen S, Jääskeläinen AJ, Smura T, Rosenberg A, Hill DA, DeBiasi RL, Vezina G, Timofeev J, Rodriguez FJ, Levanov L, Razak J, Iyengar P, Hennenfent A, Kennedy R, Lanciotti R, du Plessis A, Vapalahti O (2016) Zika virus infection with prolonged maternal viremia and fetal brain abnormalities. N Engl J Med 374(22):2142–2151

    Article  CAS  PubMed  Google Scholar 

  35. Marrs C, Olson G, Saade G, Hankins G, Wen T, Patel J, Weaver S (2016) Zika virus and pregnancy: a review of the literature and clinical considerations. Am J Perinatol 33(7):625–639

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gańczak M (2016) Zika virus infections from the perspective of the general practitioner. Family Med Primary Care Rev 4(4):487–491

    Article  Google Scholar 

  37. Modjarrad K, Lin L, George SL, Stephenson KE, Eckels KH, De La Barrera RA, Jarman RG, Sondergaard E, Tennant J, Ansel JL, Mills K, Koren M, Robb ML, Barrett J, Thompson J, Kosel AE, Dawson P, Hale A, Tan CS, Walsh SR, Meyer KE, Brien J, Crowell TA, Blazevic A, Mosby K, Larocca RA, Abbink P, Boyd M, Bricault CA, Seaman MS, Basil A, Walsh M, Tonwe V, Hoft DF, Thomas SJ, Barouch DH, Michael NL (2018) Preliminary aggregate safety and immunogenicity results from three trials of a purified inactivated Zika virus vaccine candidate: phase 1, randomised, double-blind, placebo-controlled clinical trials. Lancet 391(10120):563–571

    Article  CAS  PubMed  Google Scholar 

  38. Hadinegoro SR, Arredondo-García JL, Capeding MR, Deseda C, Chotpitayasunondh T, Dietze R, Muhammad Ismail HI, Reynales H, Limkittikul K, Rivera-Medina DM, Tran HN, Bouckenooghe A, Chansinghakul D, Cortés M, Fanouillere K, Forrat R, Frago C, Gailhardou S, Jackson N, Noriega F, Plennevaux E, Wartel TA, Zambrano B, Saville M, CYD-TDV Dengue Vaccine Working Group (2015) Efficacy and long-term safety of a dengue vaccine in regions of endemic disease. N Engl J Med 373(13):1195–1206

    Article  CAS  PubMed  Google Scholar 

  39. Halstead SB (2018) Which dengue vaccine approach is the most promising, and should we be concerned about enhanced disease after vaccination? There is only one true winner. Cold Spring Harb Perspect Biol 10(6):a030700

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wilder-Smith A, Smith PG, Luo R, Kelly-Cirino C, Curry D, Larson H, Durbin A, Chu M, Tharmaphornpilas P, Ng LC, Sartori AMC, Luna EJA, Gubler DJ, España G, Yoon IK, Flasche S (2019) Pre-vaccination screening strategies for the use of the CYD-TDV dengue vaccine: a meeting report. Vaccine 37(36):5137–5146

    Article  CAS  PubMed  Google Scholar 

  41. Flasche S, Wilder-Smith A, Hombach J, Smith PG (2019) Estimating the proportion of vaccine-induced hospitalized dengue cases among Dengvaxia vaccinees in the Philippines. Wellcome Open Res 4:165

    Article  PubMed  PubMed Central  Google Scholar 

  42. López-Medina E, Biswal S, Saez-Llorens X, Borja-Tabora C, Bravo L, Sirivichayakul C, Vargas LM, Alera MT, Velásquez H, Reynales H, Rivera L, Watanaveeradej V, Rodriguez-Arenales EJ, Yu D, Espinoza F, Dietze R, Fernando L, Wickramasinghe P, Duarte Moreira E Jr, Fernando AD, Gunasekera D, Luz K, da Cunha RV, Tricou V, Rauscher M, Liu M, LeFevre I, Wallace D, Kosalaraksa P, Borkowski A, TIDES study group (2020) Efficacy of a dengue vaccine candidate (TAK-003) in healthy children and adolescents two years after vaccination. J Infect Dis jiaa761

    Google Scholar 

  43. Biswal S, Borja-Tabora C, Martinez Vargas L, Velásquez H, Theresa Alera M, Sierra V, Johana Rodriguez-Arenales E, Yu D, Wickramasinghe VP, Duarte Moreira E Jr, Fernando AD, Gunasekera D, Kosalaraksa P, Espinoza F, López-Medina E, Bravo L, Tuboi S, Hutagalung Y, Garbes P, Escudero I, Rauscher M, Bizjajeva S, LeFevre I, Borkowski A, Saez-Llorens X, Wallace D, TIDES study group (2020) Efficacy of a tetravalent dengue vaccine in healthy children aged 4-16 years: a randomised, placebo-controlled, phase 3 trial. Lancet 395(10234):1423–1433

    Article  CAS  PubMed  Google Scholar 

  44. Fernandez S, Thomas SJ, De La Barrera R, Im-Erbsin R, Jarman RG, Baras B, Toussaint JF, Mossman S, Innis BL, Schmidt A, Malice MP, Festraets P, Warter L, Putnak JR, Eckels KH (2015) An adjuvanted, tetravalent dengue virus purified inactivated vaccine candidate induces long-lasting and protective antibody responses against dengue challenge in rhesus macaques. Am J Trop Med Hyg 92(4):698–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Robilotti E, Deresinski S, Pinsky B (2015) Norovirus. Clin Microbiol Rev 28(1):134–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hallowell BD, Parashar UD, Hall AJ (2019) Epidemiologic challenges in norovirus vaccine development. Hum Vaccin Immunother 15(6):1279–1283

    Article  PubMed  Google Scholar 

  47. Papafragkou E, Hewitt J, Park GW, Greening G, Vinjé J (2013) Challenges of culturing human norovirus in three-dimensional organoid intestinal cell culture models. PLoS One 8(6):e63485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim L, Liebowitz D, Lin K, Kasparek K, Pasetti MF, Garg SJ, Gottlieb K, Trager G, Tucker SN (2018) Safety and immunogenicity of an oral tablet norovirus vaccine, a phase I randomized, placebo-controlled trial. JCI Insight 3(13):e121077

    Article  PubMed Central  Google Scholar 

  49. Treanor J, Sherwood J, Cramer JP, Le Cam BN, Lin S, Baehner F, Borkowski A, NOR-204 investigators (2020) A phase 2 study of the bivalent VLP norovirus vaccine candidate in older adults; impact of MPL adjuvant or a second dose. Vaccine 38(36):5842–5850

    Article  CAS  PubMed  Google Scholar 

  50. Krammer F, Smith GJD, Fouchier RAM et al (2018) Influenza. Nat Rev Dis Primers 4:3

    Article  PubMed  PubMed Central  Google Scholar 

  51. Centers for Disease Control and Prevention (2019) Influenza (flu) https://www.cdc.gov/flu/about/viruses/types.htm

  52. Houser K, Subbarao K (2015) Influenza vaccines: challenges and solutions. Cell Host Microbe 17(3):295–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wei CJ, Crank MC, Shiver J et al (2020) Next-generation influenza vaccines: opportunities and challenges. Nat Rev Drug Discov 19:239–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gyawali B, Ramakrishna K, Dhamoon AS (2019) Sepsis: the evolution in definition, pathophysiology, and management. SAGE Open Med 7:2050312119835043

    Article  PubMed  PubMed Central  Google Scholar 

  55. Levy MM, Artigas A, Phillips GS et al (2012) Outcomes of the surviving sepsis campaign in intensive care units in the USA and Europe: a prospective cohort study. Lancet Infect Dis 12(12):919–924

    Article  PubMed  Google Scholar 

  56. Thompson K, Venkatesh B, Finfer S (2019) Sepsis and septic shock: current approaches to management. Intern Med J 49(2):160–170

    Article  PubMed  Google Scholar 

  57. Furfaro LL, Chang BJ, Payne MS (2018) Perinatal Streptococcus agalactiae epidemiology and surveillance targets. Clin Microbiol Rev 31(4):e00049–e00018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang X, Thompson CD, Weidenmaier C, Lee JC (2018) Release of Staphylococcus aureus extracellular vesicles and their application as a vaccine platform. Nat Commun 9(1):1379

    Article  PubMed  PubMed Central  Google Scholar 

  59. Cross AS (2010) Development of an anti-endotoxin vaccine for sepsis. Subcell Biochem 53:285–302

    Article  CAS  PubMed  Google Scholar 

  60. Zhu B, Dockrell H, Ottenhoff T, Evans T, Zhang Y (2018) Tuberculosis vaccines: opportunities and challenges. Respirology 23(4):359–368

    Article  PubMed  Google Scholar 

  61. McShane H (2019) Insights and challenges in tuberculosis vaccine development. Lancet Respir Med 7(9):810–819

    Article  PubMed  Google Scholar 

  62. Van Der Meeren O, Hatherill M, Nduba V, Wilkinson RJ, Muyoyeta M, Van Brakel E, Ayles HM, Henostroza G, Thienemann F, Scriba TJ, Diacon A, Blatner GL, Demoitié MA, Tameris M, Malahleha M, Innes JC, Hellström E, Martinson N, Singh T, Akite EJ, Khatoon Azam A, Bollaerts A, Ginsberg AM, Evans TG, Gillard P, Tait DR (2018) Phase 2b controlled trial of M72/AS01E vaccine to prevent tuberculosis. N Engl J Med 379(17):1621–1634

    Article  Google Scholar 

  63. Tait DR, Hatherill M, Van Der Meeren O, Ginsberg AM, Van Brakel E, Salaun B, Scriba TJ, Akite EJ, Ayles HM, Bollaerts A, Demoitié MA, Diacon A, Evans TG, Gillard P, Hellström E, Innes JC, Lempicki M, Malahleha M, Martinson N, Mesia Vela D, Muyoyeta M, Nduba V, Pascal TG, Tameris M, Thienemann F, Wilkinson RJ, Roman F (2019) Final analysis of a trial of M72/AS01E vaccine to prevent tuberculosis. N Engl J Med 381(25):2429–2439

    Article  CAS  PubMed  Google Scholar 

  64. Norrby M, Vesikari T, Lindqvist L, Maeurer M, Ahmed R, Mahdavifar S, Bennett S, McClain JB, Shepherd BM, Li D, Hokey DA, Kromann I, Hoff ST, Andersen P, de Visser AW, Joosten SA, Ottenhoff THM, Andersson J, Brighenti S (2017) Safety and immunogenicity of the novel H4:IC31 tuberculosis vaccine candidate in BCG-vaccinated adults: two phase I dose escalation trials. Vaccine 35(12):1652–1661

    Article  CAS  PubMed  Google Scholar 

  65. Bekker LG, Dintwe O, Fiore-Gartland A, Middelkoop K, Hutter J, Williams A, Randhawa AK, Ruhwald M, Kromann I, Andersen PL, DiazGranados CA, Rutkowski KT, Tait D, Miner MD, Andersen-Nissen E, De Rosa SC, Seaton KE, Tomaras GD, McElrath MJ, Ginsberg A, Kublin JG, HVTN 602/Aeras A-042 Protocol Team (2020) A phase 1b randomized study of the safety and immunological responses to vaccination with H4:IC31, H56:IC31, and BCG revaccination in Mycobacterium tuberculosis-uninfected adolescents in Cape Town, South Africa. EClinicalMedicine 21:100313

    Article  PubMed  PubMed Central  Google Scholar 

  66. Madison-Antenucci S, Kramer LD, Gebhardt LL, Kauffman E (2020) Emerging tick-borne diseases. Clin Microbiol Rev 33(2):e00083–e00018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pritt BS, Respicio-Kingry LB, Sloan LM, Schriefer ME, Replogle AJ, Bjork J, Liu G, Kingry LC, Mead PS, Neitzel DF, Schiffman E, Hoang Johnson DK, Davis JP, Paskewitz SM, Boxrud D, Deedon A, Lee X, Miller TK, Feist MA, Steward CR, Theel ES, Patel R, Irish CL, Petersen JM (2016) Borrelia mayonii sp. nov., a member of the Borrelia burgdorferi sensu lato complex, detected in patients and ticks in the upper midwestern United States. Int J Syst Evol Microbiol 66(11):4878–4488

    Article  CAS  PubMed  Google Scholar 

  68. Brennan M, LeFevre F (2019) Necrotizing fasciitis: infection identification and management. Nursing Crit Care 14(1):6–11

    Article  Google Scholar 

  69. WHO (2020) World malaria report 2020. 20 years of global progress and challenges. https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2020

  70. Kumar H, Tolia NH (2019) Getting in: the structural biology of malaria invasion. PLoS Pathog 15(9):e1007943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wykes MN (2013) Why haven't we made an efficacious vaccine for malaria? EMBO Rep 14(8):661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Alonso PL, Sacarlal J, Aponte JJ, Leach A, Macete E, Milman J, Mandomando I, Spiessens B, Guinovart C, Espasa M, Bassat Q, Aide P, Ofori-Anyinam O, Navia MM, Corachan S, Ceuppens M, Dubois MC, Demoitié MA, Dubovsky F, Menéndez C, Tornieporth N, Ballou WR, Thompson R, Cohen J (2004) Efficacy of the RTS,S/AS02A vaccine against Plasmodium falciparum infection and disease in young African children: randomised controlled trial. Lancet 364(9443):1411–1420

    Article  CAS  PubMed  Google Scholar 

  73. Cockburn IA et al (2018) Malaria prevention: from immunological concepts to effective vaccines and protective antibodies. Nat Immunol 19:1199–1211

    Article  CAS  PubMed  Google Scholar 

  74. Keating C (2020) The history of the RTS,S/AS01 malaria vaccine trial. Lancet 395(10233):1336–1337

    Article  PubMed  Google Scholar 

  75. RTSS Clinical Trials Partnership (2015) Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet 6736:31–45

    Google Scholar 

  76. Reimer JM, Karlsson KH, Lövgren-Bengtsson K, Magnusson SE, Fuentes A, Stertman L (2012) Matrix-M™ adjuvant induces local recruitment, activation and maturation of central immune cells in absence of antigen. PLoS One 7(7):e41451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Collins KA, Snaith R, Cottingham MG, Gilbert SC, Hill AVS (2017) Enhancing protective immunity to malaria with a highly immunogenic virus-like particle vaccine. Sci Rep 7:46621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Venkatraman N et al (2019) Phase I assessments of first-in-human administration of a novel malaria anti-sporozoite vaccine candidate, R21 in matrix-M adjuvant, in UK and Burkinabe volunteers. Preprint at Medarxiv

    Google Scholar 

  79. Mayer F (2020) The quest for a vaccine against malaria. Nature Portfolio. https://www.nature.com/articles/d42859-020-00021-8

  80. Future Medicine (2020) Serum Institute joins hands with Novavax for malaria vaccine. https://futuremedicineindia.com/serum-institute-joins-hands-with-novavax-for-malaria-vaccine/

  81. Jiang T, Shi T, Zhang H et al (2019) Tumor neoantigens: from basic research to clinical applications. J Hematol Oncol 12:93

    Article  PubMed  PubMed Central  Google Scholar 

  82. Shen XY, Orson FM, Kosten TR (2012) Vaccines against drug abuse. Clin Pharmacol Ther 91:60–70

    Article  CAS  PubMed  Google Scholar 

  83. Takada A, Kawaoka Y (2003) Antibody-dependent enhancement of viral infection: molecular mechanisms and in vivo implications. Rev Med Virol 13(6):387–398

    Article  CAS  PubMed  Google Scholar 

  84. Halstead SB, O’Rourke RJ (1977) Dengue viruses and mononuclear phagocytes. I. Infection enhancement by non-neutralizing antibody. J Exp Med 146(1):201–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Halstead SB, O’Rourke RJ, Allison AC (1977) Dengue viruses and mononuclear phagocytes. II. Identity of blood and tissue leukocytes supporting in vitro infection. J Exp Med 146:218–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hadinegoro SR, Arredondo-Garcia JL, Capeding MR et al (2015) Efficacy and long-term safety of a dengue vaccine in regions of endemic disease. N Engl J Med 373:1195–1206

    Article  CAS  PubMed  Google Scholar 

  87. Bardina SV, Bunduc P, Tripathi S, Duehr J, Frere JJ, Brown JA, Nachbagauer R, Foster GA, Krysztof D, Tortorella D, Stramer SL, García-Sastre A, Krammer F, Lim JK (2017) Enhancement of Zika virus pathogenesis by preexisting antiflavivirus immunity. Science 356(6334):175–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Siebelink KH, Tijhaar E, Huisman RC, Huisman W, de Ronde A, Darby IH et al (1995) Enhancement of feline immunodeficiency virus infection after immunization with envelope glycoprotein subunit vaccines. J Virol 69:3704–3711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Le Grand R, Vogt G, Chapel A, Dormont D (1991) Antibody-dependent enhancement and neutralization pattern of sera from SIV-infected or HIV-2-vaccinated rhesus monkeys. J Med Primatol 20:172–176

    Article  PubMed  Google Scholar 

  90. Robinson WE Jr, Montefiori DC, Mitchell WM (1988) Antibody-dependent enhancement of human immunodeficiency virus type 1 infection. Lancet 331(8589):790–794

    Article  Google Scholar 

  91. Cohen J (2007) AIDS research. Did Merck’s failed HIV vaccine cause harm? Science 318(5853):1048–1049

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Thomas, S., Abraham, A., Callaghan, P.J., Rappuoli, R. (2022). Challenges for Vaccinologists in the First Half of the Twenty-First Century. In: Thomas, S. (eds) Vaccine Design. Methods in Molecular Biology, vol 2410. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1884-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1884-4_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1883-7

  • Online ISBN: 978-1-0716-1884-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics