Skip to main content

Exploring Ribosome-Positioning on Translating Transcripts with Ribosome Profiling

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2404))

Abstract

The emergence of ribosome profiling as a tool for measuring the translatome has provided researchers with valuable insights into the post-transcriptional regulation of gene expression. Despite the biological insights and technical improvements made since the technique was initially described by Ingolia et al. (Science 324(5924):218–223, 2009), ribosome profiling measurements and subsequent data analysis remain challenging. Here, we describe our lab’s protocol for performing ribosome profiling in bacteria, yeast, and mammalian cells. This protocol has integrated elements from three published ribosome profiling methods. In addition, we describe a tool called RiboViz (Carja et al., BMC Bioinformatics 18:461, 2017) (https://github.com/riboviz/riboviz) for the analysis and visualization of ribosome profiling data. Given raw sequencing reads and transcriptome information (e.g., FASTA, GFF) for a species, RiboViz performs the necessary pre-processing and mapping of the raw sequencing reads. RiboViz also provides the user with various quality control visualizations.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324(5924):218–223. https://doi.org/10.1126/science.1168978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ingolia NT, Lareau LF, Weissman JS (2011) Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147(4):789–802. https://doi.org/10.1016/j.cell.2011.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Steitz JA (1969) Polypeptide chain initiation: nucleotide sequences of the three ribosomal binding sites in bacteriophage R17 RNA. Nature 224(5223):957–964. https://doi.org/10.1038/224957a0

    Article  CAS  PubMed  Google Scholar 

  4. Wolin SL, Walter P (1988) Ribosome pausing and stacking during translation of a eukaryotic mRNA. EMBO J 7(11):3559–3569. https://doi.org/10.1002/j.1460-2075.1988.tb03233.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Weaver J, Mohammad F, Buskirk AR, Storz G (2019) Identifying small proteins by ribosome profiling with stalled initiation complexes. MBio 10(2):e02819-18. https://doi.org/10.1128/mBio.02819-18

    Article  PubMed  PubMed Central  Google Scholar 

  6. Koch A, Gawron D, Steyaert S, Ndah E, Crappé J, De Keulenaer S et al (2014) A proteogenomics approach integrating proteomics and ribosome profiling increases the efficiency of protein identification and enables the discovery of alternative translation start sites. Proteomics 14(23–24):2688–2698. https://doi.org/10.1002/pmic.201400180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fluman N, Navon S, Bibi E, Pilpel Y (2014) mRNA-programmed translation pauses in the targeting of E. coli membrane proteins. elife 3:e03440. https://doi.org/10.7554/eLife.03440

    Article  PubMed Central  Google Scholar 

  8. Walsh IM, Bowman MA, Soto Santarriaga IF, Rodriguez A, Clark PL (2020) Synonymous codon substitutions perturb cotranslational protein folding in vivo and impair cell fitness. Proc Natl Acad Sci U S A 117(7):3528–3534. https://doi.org/10.1073/pnas.1907126117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xu Y, Ma P, Shah P, Rokas A, Liu Y, Johnson CH (2013) Non-optimal codon usage is a mechanism to achieve circadian clock conditionality. Nature 495(7439):116–120. https://doi.org/10.1038/nature11942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gerashchenko MV, Gladyshev VN (2014) Translation inhibitors cause abnormalities in ribosome profiling experiments. Nucleic Acids Res 42(17):e134. https://doi.org/10.1093/nar/gku671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hussmann JA, Patchett S, Johnson A, Sawyer S, Press WH (2015) Understanding biases in ribosome profiling experiments reveals signatures of translation dynamics in yeast. PLoS Genet 11(12):e1005732. https://doi.org/10.1371/journal.pgen.1005732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Weinberg DE, Shah P, Eichhorn SW, Hussmann JA, Plotkin JB, Bartel DP (2016) Improved ribosome-footprint and mRNA measurements provide insights into dynamics and regulation of yeast translation. Cell Rep 14(7):1787–1799. https://doi.org/10.1016/j.celrep.2016.01.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee S, Liu B, Lee S, Huang S-X, Shen B, Qian S-B (2012) Global mapping of translation initiation sites in mammalian cells at single-nucleotide resolution. Proc Natl Acad Sci U S A 109(37):E2424–E2432. https://doi.org/10.1073/pnas.1207846109

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lareau LF, Hite DH, Hogan GJ, Brown PO (2014) Distinct stages of the translation elongation cycle revealed by sequencing ribosome-protected mRNA fragments. elife 3:e01257. https://doi.org/10.7554/eLife.01257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wu CC-C, Zinshteyn B, Wehner KA, Green R (2019) High-resolution ribosome profiling defines discrete ribosome elongation states and translational regulation during cellular stress. Mol Cell 73(5):959–970.e5. https://doi.org/10.1016/j.molcel.2018.12.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mohammad F, Green R, Buskirk AR (2019) A systematically-revised ribosome profiling method for bacteria reveals pauses at single-codon resolution. elife:8. https://doi.org/10.7554/eLife.42591

  17. McGlincy NJ, Ingolia NT (2017) Transcriptome-wide measurement of translation by ribosome profiling. Methods 126:112–129. https://doi.org/10.1016/j.ymeth.2017.05.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Subtelny AO, Eichhorn SW, Chen GR, Sive H, Bartel DP (2014) Poly(A)-tail profiling reveals an embryonic switch in translational control. Nature 508(7494):66–71. https://doi.org/10.1038/nature13007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Carja O, Xing T, Wallace EWJ, Plotkin JB, Shah P (2017) riboviz: analysis and visualization of ribosome profiling datasets. BMC Bioinformatics 18(1):461. https://doi.org/10.1186/s12859-017-1873-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17(1):10–12. http://journal.embnet.org/index.php/embnetjournal/article/view/200/479

    Article  Google Scholar 

  21. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL (2019) Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37(8):907–915. https://doi.org/10.1038/s41587-019-0201-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen J, Brunner A-D, Zachery Cogan J, Nuñez JK, Fields AP, Adamson B et al (2020) Pervasive functional translation of noncanonical human open reading frames. Science 367(6482):1140–1146. https://doi.org/10.1126/science.aay0262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gelsinger DR, Dallon E, Reddy R, Mohammad F, Buskirk AR, DiRuggiero J (2020) Ribosome profiling in archaea reveals leaderless translation, novel translational initiation sites, and ribosome pausing at single codon resolution. Nucleic Acids Res 48(10):5201–5216. https://doi.org/10.1093/nar/gkaa304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Smith T, Heger A, Sudbery I (2017) UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy. Genome Res 27(3):491–499. https://doi.org/10.1101/gr.209601.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Meydan S, Marks J, Klepacki D, Sharma V, Baranov PV, Firth AE et al (2019) Retapamulin-assisted ribosome profiling reveals the alternative bacterial proteome. Mol Cell 74(3):481–493.e6. https://doi.org/10.1016/j.molcel.2019.02.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gao X, Wan J, Liu B, Ma M, Shen B, Qian S-B (2015) Quantitative profiling of initiating ribosomes in vivo. Nat Methods 12(2):147–153. https://doi.org/10.1038/nmeth.3208

    Article  CAS  PubMed  Google Scholar 

  27. Zinshteyn B, et al (2020) Nuclease-mediated depletion biases in ribosome footprint profiling libraries. RNA 26(10):1481–1488

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Premal Shah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cope, A.L., Vellappan, S., Favate, J.S., Skalenko, K.S., Yadavalli, S.S., Shah, P. (2022). Exploring Ribosome-Positioning on Translating Transcripts with Ribosome Profiling. In: Dassi, E. (eds) Post-Transcriptional Gene Regulation. Methods in Molecular Biology, vol 2404. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1851-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1851-6_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1850-9

  • Online ISBN: 978-1-0716-1851-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics