Skip to main content

Inferring Copy Number from Triple-Negative Breast Cancer Patient Derived Xenograft scRNAseq Data Using scCNA

  • Protocol
  • First Online:
Mapping Genetic Interactions

Abstract

Cancer can develop from an accumulation of alterations, some of which cause a nonmalignant cell to transform to a malignant state exhibiting increased rate of cell growth and evasion of growth suppressive mechanisms, eventually leading to tissue invasion and metastatic disease. Triple-negative breast cancers (TNBC) are heterogeneous and are clinically characterized by the lack of expression of hormone receptors and human epidermal growth factor receptor 2 (HER2), which limits its treatment options. Since tumor evolution is driven by diverse cancer cell populations and their microenvironment, it is imperative to map TNBC at single-cell resolution. Here, we describe an experimental procedure for isolating a single-cell suspension from a TNBC patient-derived xenograft, subjecting it to single-cell RNA sequencing using droplet-based technology from 10× Genomics and analyzing the transcriptomic data at single-cell resolution to obtain inferred copy number aberration profiles, using scCNA. Data obtained using this single-cell RNA sequencing experimental and analytical methodology should enhance our understanding of intratumor heterogeneity which is key for identifying genetic vulnerabilities and developing effective therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vogelstein B et al (2013) Cancer genome landscapes. Science 339:1546–1558

    Article  CAS  Google Scholar 

  2. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  Google Scholar 

  3. Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194:23–28

    Article  CAS  Google Scholar 

  4. Bhang HE et al (2015) Studying clonal dynamics in response to cancer therapy using high-complexity barcoding. Nat Med 21:440–448

    Article  CAS  Google Scholar 

  5. Jamal-Hanjani M et al (2017) Tracking the evolution of non-small-cell lung cancer. N Engl J Med 376:2109–2121

    Article  CAS  Google Scholar 

  6. Russo M et al (2016) Tumor heterogeneity and lesion-specific response to targeted therapy in colorectal cancer. Cancer Discov 6:147–153

    Article  CAS  Google Scholar 

  7. Weinberg RA (2014) The biology of cancer. Garland science Taylor and Francis Group, New York

    Google Scholar 

  8. Bertos NR, Park M (2011) Breast cancer - one term, many entities? J Clin Invest 121:3789–3796

    Article  CAS  Google Scholar 

  9. Sorlie T et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98:10869–10874

    Article  CAS  Google Scholar 

  10. Perou CM et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  CAS  Google Scholar 

  11. Hammond ME et al (2010) American Society of Clinical Oncology/college of American pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol 28:2784–2795

    Article  Google Scholar 

  12. Haffty BG et al (2006) Locoregional relapse and distant metastasis in conservatively managed triple negative early-stage breast cancer. J Clin Oncol 24:5652–5657

    Article  Google Scholar 

  13. Lehmann BD et al (2016) Refinement of triple-negative breast cancer molecular subtypes: implications for neoadjuvant chemotherapy selection. PLoS One 11:e0157368

    Article  Google Scholar 

  14. Lehmann BD et al (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121:2750–2767

    Article  CAS  Google Scholar 

  15. Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490:61–70

    Article  Google Scholar 

  16. Curtis C et al (2012) The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486:346–352

    Article  CAS  Google Scholar 

  17. Savage P et al (2020) Chemogenomic profiling of breast cancer patient-derived xenografts reveals targetable vulnerabilities for difficult-to-treat tumors. Commun Biol 3(1):310

    Article  CAS  Google Scholar 

  18. Invrea F et al (2020) Patient-derived xenografts (PDXs) as model systems for human cancer. Curr Opin Biotechnol 63:151–156

    Article  CAS  Google Scholar 

  19. Tang F et al (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6:377–382

    Article  CAS  Google Scholar 

  20. Islam S et al (2014) Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods 11:163–166

    Article  CAS  Google Scholar 

  21. Aceto N et al (2014) Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158:1110–1122

    Article  CAS  Google Scholar 

  22. Hughes AE et al (2014) Clonal architecture of secondary acute myeloid leukemia defined by single-cell sequencing. PLoS Genet 10:e1004462

    Article  Google Scholar 

  23. Eirew P et al (2015) Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature 518:422–426

    Article  CAS  Google Scholar 

  24. Filbin MG et al (2018) Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq. Science 360:331–335

    Article  CAS  Google Scholar 

  25. Jessa S et al (2019) Stalled developmental programs at the root of pediatric brain tumors. Nat Genet 51:1702–1713

    Article  CAS  Google Scholar 

  26. Savage P et al (2017) A targetable EGFR-dependent tumor-initiating program in breast cancer. Cell Rep 21:1140–1149

    Article  CAS  Google Scholar 

  27. Wang Y, Navin NE (2015) Advances and applications of single-cell sequencing technologies. Mol Cell 58:598–609

    Article  CAS  Google Scholar 

  28. Rauscher B et al (2018) Toward an integrated map of genetic interactions in cancer cells. Mol Syst Biol 14:e7656

    Article  Google Scholar 

  29. Tsherniak A et al (2017) Defining a cancer dependency map. Cell 170:564–576. e516

    Article  CAS  Google Scholar 

  30. Marcotte R et al (2016) Functional genomic landscape of human breast cancer drivers, vulnerabilities, and resistance. Cell 164:293–309

    Article  CAS  Google Scholar 

  31. Hart T et al (2015) High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell 163:1515–1526

    Article  CAS  Google Scholar 

  32. Wang T et al (2015) Identification and characterization of essential genes in the human genome. Science 350:1096–1101

    Article  CAS  Google Scholar 

  33. Wang T et al (2017) Gene essentiality profiling reveals gene networks and synthetic lethal interactions with oncogenic Ras. Cell 168:890–903. e815

    Article  CAS  Google Scholar 

  34. Couturier CP et al (2020) Single-cell RNA-seq reveals that glioblastoma recapitulates a normal neurodevelopmental hierarchy. Nat Commun 11:3406

    Article  CAS  Google Scholar 

  35. Kuzmin, E.e.a. (in preparation)

    Google Scholar 

  36. Stuart T et al (2019) Comprehensive integration of single-cell data. Cell 177:1888–1902. e1821

    Article  CAS  Google Scholar 

  37. Tirosh I et al (2016) Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352:189–196

    Article  CAS  Google Scholar 

  38. Project TC inferCNV. https://github.com/broadinstitute/inferCNV

  39. Moldenhauer G, Momburg F, Moller P et al (1987) Epithelium-specific surface glycoprotein of Mr 34,000 is a widely distributed human carcinoma marker. Br J Cancer 56:714–721

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The scRNAseq protocol was developed for and tested at the “Wellcome Trust Advanced Course in RNA transcriptomics.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jean Monlong , Guillaume Bourque or Morag Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kuzmin, E. et al. (2021). Inferring Copy Number from Triple-Negative Breast Cancer Patient Derived Xenograft scRNAseq Data Using scCNA. In: Vizeacoumar, F.J., Freywald, A. (eds) Mapping Genetic Interactions. Methods in Molecular Biology, vol 2381. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1740-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1740-3_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1739-7

  • Online ISBN: 978-1-0716-1740-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics