Skip to main content

A Mesoscale 3D Culture System for Native and Engineered Biphasic Tissues: Application to the Osteochondral Unit

  • Protocol
  • First Online:
Organ-on-a-Chip

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2373))

Abstract

Interface tissues are functionally graded tissues characterized by a complex layered structure, which therefore present a great challenge to be reproduced and cultured in vitro. Here, we describe the design and operation of a 3D printed dual-chamber bioreactor as a culturing system for biphasic native or engineered osteochondral tissues. The bioreactor is designed to potentially accommodate a variety of interface tissues and enables the precise study of tissue crosstalk by creating two separate microenvironments while maintaining the tissue compartments in direct contact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Seidi A, Ramalingam M, Elloumi-Hannachi I et al (2011) Gradient biomaterials for soft-to-hard interface tissue engineering. Acta Biomater 7:1441–1451. https://doi.org/10.1016/j.actbio.2011.01.011

    Article  CAS  PubMed  Google Scholar 

  2. Chiesa I, Fortunato GM, Lapomarda A et al (2019) Ultrasonic mixing chamber as an effective tool for the biofabrication of fully graded scaffolds for interface tissue engineering. Int J Artif Organs 42(10):586–594. https://doi.org/10.1177/0391398819852960

    Article  CAS  PubMed  Google Scholar 

  3. Patel S, Caldwell JM, Doty SB et al (2018) Integrating soft and hard tissues via interface tissue engineering. J Orthop Res 36:1069–1077. https://doi.org/10.1002/jor.23810

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rao RT, Browe DP, Lowe CJ, Freeman JW (2016) An overview of recent patents on musculoskeletal interface tissue engineering. Connect Tissue Res 57:53–67. https://doi.org/10.3109/03008207.2015.1089866

    Article  CAS  PubMed  Google Scholar 

  5. Atesok K, Doral MN, Karlsson J et al (2016) Multilayer scaffolds in orthopaedic tissue engineering. Knee Surg Sports Traumatol Arthrosc 24:2365–2373. https://doi.org/10.1007/s00167-014-3453-z

    Article  PubMed  Google Scholar 

  6. Lin H, Lozito TP, Alexander PG et al (2014) Stem cell-based microphysiological osteochondral system to model tissue response to interleukin-1Β. Mol Pharm 11:2203–2212. https://doi.org/10.1021/mp500136b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Findlay DM, Kuliwaba JS (2016) Bone-cartilage crosstalk: a conversation for understanding osteoarthritis. Bone Res 4(1):1–12. https://doi.org/10.1038/boneres.2016.28

    Article  CAS  Google Scholar 

  8. Tuan RS, Lin H, Lozito TP, et al (2016) Pub . No .: US 2016 / 0271610 A1 Patent Application Publication. 1:1–5

    Google Scholar 

  9. Iannetti L, D’Urso G, Conoscenti G et al (2016) Distributed and lumped parameter models for the characterization of high throughput bioreactors. PLoS One 11:1–25. https://doi.org/10.1371/journal.pone.0162774

    Article  CAS  Google Scholar 

  10. Pirosa A, Gottardi R, Alexander PG, Tuan RS (2018) Engineering in-vitro stem cell-based vascularized bone models for drug screening and predictive toxicology. Stem Cell Res Ther 9(1):112. https://doi.org/10.1186/s13287-018-0847-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chiesa I, De Maria C, Lapomarda A et al (2020) Endothelial cells support osteogenesis in an in vitro vascularized bone model developed by 3D bioprinting. Biofabrication 12(2):025013. https://doi.org/10.1088/1758-5090/ab6a1d

    Article  CAS  PubMed  Google Scholar 

  12. Black RM, Wang Y, Struglics A et al (2020) Proteomic analysis reveals dexamethasone rescues matrix breakdown but not anabolic dysregulation in a cartilage injury model. Osteoarthr Cartil Open 2:100099. https://doi.org/10.1016/j.ocarto.2020.100099

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wang XC, Zhao NJ, Guo C et al (2014) Quercetin reversed lipopolysaccharide-induced inhibition of osteoblast differentiation through the mitogen-activated protein kinase pathway in MC3T3-E1 cells. Mol Med Rep 10:3320–3326. https://doi.org/10.3892/mmr.2014.2633

    Article  CAS  PubMed  Google Scholar 

  14. Gottardi R, Lin H, D’urso G, et al (2016) Validation of an osteochondral microphysiological system applied to study the protective role of sex hormones. Paper presented at the 6th Orthopaedic Research Society Annual Meeting, Orlando, Florida, 5-8 March 2016

    Google Scholar 

  15. Wernecke C, Braun HJ, Dragoo JL (2015) The effect of intra-articular corticosteroids on articular cartilage: a systematic review. Orthop J Sport Med 3:1–7. https://doi.org/10.1177/2325967115581163

    Article  Google Scholar 

  16. Mastbergen SC, Jansen NWD, Bijlsma JWJ, Lafeber FPJG (2005) Differential direct effects of cyclo-oxygenase-1/2 inhibition on proteoglycan turnover of human osteoarthritic cartilage: an in vitro study. Arthritis Res Ther 8:1–9. https://doi.org/10.1186/ar1846

    Article  CAS  Google Scholar 

  17. Chevalier X, Goupille P, Beaulieu AD et al (2009) Intraarticular injection of anakinra in osteoarthritis of the knee: a multicenter, randomized, double-blind, placebo-controlled study. Arthritis Care Res 61:344–352. https://doi.org/10.1002/art.24096

    Article  CAS  Google Scholar 

  18. Li X, Chang B, Wang B et al (2017) Rapamycin promotes osteogenesis under inflammatory conditions. Mol Med Rep 16:8923–8929. https://doi.org/10.3892/mmr.2017.7693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wattel A, Kamel S, Mentaverri R et al (2003) Potent inhibitory effect of naturally occurring flavonoids quercetin and kaempferol on in vitro osteoclastic bone resorption. Biochem Pharmacol 65:35–42. https://doi.org/10.1016/S0006-2952(02)01445-4

    Article  CAS  PubMed  Google Scholar 

  20. Nichols DA, Sondh IS, Litte SR et al (2018) Design and validation of an osteochondral bioreactor for the screening of treatments for osteoarthritis. Biomed Microdevices 20:4–11. https://doi.org/10.1007/s10544-018-0264-x

    Article  CAS  Google Scholar 

  21. Mannella GA, Conoscenti G, Carfì Pavia F et al (2015) Preparation of polymeric foams with a pore size gradient via thermally induced phase separation (TIPS). Mater Lett 160:31–33. https://doi.org/10.1016/j.matlet.2015.07.055

    Article  CAS  Google Scholar 

  22. Font Tellado S, Bonani W, Balmayor ER et al (2017) Fabrication and characterization of biphasic silk fibroin scaffolds for tendon/ligament-to-bone tissue engineering. Tissue Eng Part A 23:859–872. https://doi.org/10.1089/ten.tea.2016.0460

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge current and former members of the Center for Cellular and Molecular Engineering at the University of Pittsburgh who contributed to the design of the bioreactor and the development of protocols, including Dr. Rocky S. Tuan, Dr. Hang Lin, Dr. Peter G. Alexander, Dr. Thomas P. Lozito, Dr. Gioacchino Conoscenti, and Dr. Alessandro Pirosa. The authors acknowledge the contributions of Mr. Andy Holmes at the Swanson Center for Product Innovation at the University of Pittsburgh to the fabrication of the bioreactor. The work leading to the development of the bioreactor and of these protocols was supported by grants from the Commonwealth of Pennsylvania Department of Health, the National Institutes of Health (1U18 TR000532-01), the Ri.MED Foundation, the Children’s Hospital of Philadelphia Research Institute, and the Frontier Program in Airway Disorders of the Children’s Hospital of Philadelphia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Gottardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chiesa, I., Di Gesù, R., Overholt, K.J., Gottardi, R. (2022). A Mesoscale 3D Culture System for Native and Engineered Biphasic Tissues: Application to the Osteochondral Unit. In: Rasponi, M. (eds) Organ-on-a-Chip. Methods in Molecular Biology, vol 2373. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1693-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1693-2_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1692-5

  • Online ISBN: 978-1-0716-1693-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics