Skip to main content

Nascent Transcript Sequencing for the Mapping of Promoters in Arabidopsis thaliana Mitochondria

  • Protocol
  • First Online:
Plant Mitochondria

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2363))

Abstract

Knowledge of mitochondrial transcription start sites and promoter sequences is key to understanding mechanisms of transcription initiation in plant mitochondria. Transcription start sites can be straightforwardly determined by the mapping of primary transcript 5′ ends. This chapter describes a next-generation sequencing–based protocol for the mitochondrial genome-wide mapping of transcription start sites in Arabidopsis thaliana. Like other strategies aiming at the determination of primary transcript 5′ ends, this protocol exploits that only primary but not processed transcripts are 5′-triphosphorylated and, based on this property, can be enzymatically selected for. However, it uses nascent transcripts, in order to (1) enhance mitochondrial coverage compared with other compartments, (2) reduce rRNA and other background, and (3) also capture the primary 5′ ends of rapidly degraded or processed transcripts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hammani K, Giege P (2014) RNA metabolism in plant mitochondria. Trends Plant Sci 19(6):380–389

    Article  CAS  Google Scholar 

  2. Holec S, Lange H, Canaday J, Gagliardi D (2008) Coping with cryptic and defective transcripts in plant mitochondria. Biochim Biophys Acta 1779(9):566–573

    Article  CAS  Google Scholar 

  3. Dombrowski S, Hoffmann M, Guha C, Binder S (1999) Continuous primary sequence requirements in the 18-nucleotide promoter of dicot plant mitochondria. J Biol Chem 274(15):10094–10099

    Article  CAS  Google Scholar 

  4. Kühn K, Weihe A, Börner T (2005) Multiple promoters are a common feature of mitochondrial genes in Arabidopsis. Nucleic Acids Res 33(1):337–346

    Article  Google Scholar 

  5. Forner J, Weber B, Thuss S, Wildum S, Binder S (2007) Mapping of mitochondrial mRNA termini in Arabidopsis thaliana: t-elements contribute to 5′ and 3′ end formation. Nucleic Acids Res 35(11):3676–3692

    Article  CAS  Google Scholar 

  6. Kühn K, Richter U, Meyer EH, Delannoy E, Falcon de Longevialle A, O'Toole N, Börner T, Millar AH, Small ID, Whelan J (2009) Phage-type RNA polymerase RPOTmp performs gene-specific transcription in mitochondria of Arabidopsis thaliana. Plant Cell 21(9):2762–2779

    Article  Google Scholar 

  7. Ni T, Corcoran DL, Rach EA, Song S, Spana EP, Gao Y, Ohler U, Zhu J (2010) A paired-end sequencing strategy to map the complex landscape of transcription initiation. Nat Methods 7(7):521–527

    Article  CAS  Google Scholar 

  8. Sharma CM, Hoffmann S, Darfeuille F, Reignier J, Findeiss S, Sittka A, Chabas S, Reiche K, Hackermuller J, Reinhardt R, Stadler PF, Vogel J (2010) The primary transcriptome of the major human pathogen helicobacter pylori. Nature 464(7286):250–255

    Article  CAS  Google Scholar 

  9. Takahashi H, Lassmann T, Murata M, Carninci P (2012) 5′ end-centered expression profiling using cap-analysis gene expression and next-generation sequencing. Nat Protoc 7(3):542–561

    Article  CAS  Google Scholar 

  10. Zhelyazkova P, Sharma CM, Forstner KU, Liere K, Vogel J, Borner T (2012) The primary transcriptome of barley chloroplasts: numerous noncoding RNAs and the dominating role of the plastid-encoded RNA polymerase. Plant Cell 24(1):123–136

    Article  CAS  Google Scholar 

  11. Kruesi WS, Core LJ, Waters CT, Lis JT, Meyer BJ (2013) Condensin controls recruitment of RNA polymerase II to achieve nematode X-chromosome dosage compensation. eLife 2:e00808

    Article  Google Scholar 

  12. Core LJ, Waterfall JJ, Lis JT (2008) Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322(5909):1845–1848

    Article  CAS  Google Scholar 

  13. Churchman LS, Weissman JS (2011) Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature 469(7330):368–373

    Article  CAS  Google Scholar 

  14. Kwak H, Fuda NJ, Core LJ, Lis JT (2013) Precise maps of RNA polymerase reveal how promoters direct initiation and pausing. Science 339(6122):950–953

    Article  CAS  Google Scholar 

  15. Hetzel J, Duttke SH, Benner C, Chory J (2016) Nascent RNA sequencing reveals distinct features in plant transcription. Proc Natl Acad Sci U S A 113(43):12316–12321

    Article  CAS  Google Scholar 

  16. Murcha MW, Whelan J (2015) Isolation of intact mitochondria from the model plant species Arabidopsis thaliana and Oryza sativa. Methods Mol Biol 1305:1–12

    Article  CAS  Google Scholar 

  17. Freese NH, Norris DC, Loraine AE (2016) Integrated genome browser: visual analytics platform for genomics. Bioinformatics 32(14):2089–2095

    Article  CAS  Google Scholar 

  18. Sloan DB, Wu Z, Sharbrough J (2018) Correction of persistent errors in Arabidopsis reference mitochondrial genomes. Plant Cell 30(3):525–527

    Article  CAS  Google Scholar 

  19. Girardot C, Scholtalbers J, Sauer S, Su SY, Furlong EE (2016) Je, a versatile suite to handle multiplexed NGS libraries with unique molecular identifiers. BMC Bioinformatics 17(1):419

    Article  Google Scholar 

  20. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9(4):357–359

    Article  CAS  Google Scholar 

  21. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25

    Article  Google Scholar 

  22. Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27(21):2987–2993

    Article  CAS  Google Scholar 

  23. Li H (2011) Improving SNP discovery by base alignment quality. Bioinformatics 27(8):1157–1158

    Article  CAS  Google Scholar 

  24. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing S (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079

    Article  Google Scholar 

  25. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26(6):841–842

    Article  CAS  Google Scholar 

  26. Meyer EH, Millar AH (2008) Isolation of mitochondria from plant cell culture. Methods Mol Biol 425:163–169

    Article  Google Scholar 

Download references

Acknowledgments

The work to develop plant organelle nascent transcript sequencing has been supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), grant numbers CRC TRR175-A01 and 400681449/GRK2498-P08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristina Kühn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Saleh, O., Dwiani, S., Rott, J., Kühn, K. (2022). Nascent Transcript Sequencing for the Mapping of Promoters in Arabidopsis thaliana Mitochondria. In: Van Aken, O., Rasmusson, A.G. (eds) Plant Mitochondria. Methods in Molecular Biology, vol 2363. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1653-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1653-6_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1652-9

  • Online ISBN: 978-1-0716-1653-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics