Skip to main content

Antigen-Specific In Vivo Killing Assay

  • 936 Accesses

Part of the Methods in Molecular Biology book series (MIMB,volume 2325)

Abstract

The in vivo killing assay allows the quantification of the antigen-specific killing capacity of Cytotoxic CD8+ T Lymphocytes (CTLs) in mice. CTLs are indeed known for the lysis of cells expressing foreign or modified antigen peptides on their MHC class I molecules. Here we describe the detailed protocol used for the in vivo specific lysis of cells expressing the H-2 Kb immunodominant CD8+ T-cell epitope of the OVA protein: an 8 amino acid peptide corresponding to the 257–264 region of OVA (SIINFEKL).

Key words

  • Flow cytometry-based In vivo killing assay
  • Cytotoxic CD8+ T lymphocytes
  • Mouse model
  • Vaccine testing
  • Antigen-specific lysis of target cells

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-1507-2_4
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-1507-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bhat P, Leggatt G, Waterhouse N, Frazer IH (2017) Interferon-gamma derived from cytotoxic lymphocytes directly enhances their motility and cytotoxicity. Cell Death Dis 8(6):e2836

    CAS  CrossRef  Google Scholar 

  2. Heusel JW, Wesselschmidt RL, Shresta S, Russell JH, Ley TJ (1994) Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells. Cell 76(6):977–987

    CAS  CrossRef  Google Scholar 

  3. Smyth MJ, Kelly JM, Sutton VR, Davis JE, Browne KA, Sayers TJ et al (2001) Unlocking the secrets of cytotoxic granule proteins. J Leukoc Biol 70(1):18–29

    CAS  PubMed  Google Scholar 

  4. Topham DJ, Tripp RA, Doherty PC (1997) CD8+ T cells clear influenza virus by perforin or Fas-dependent processes. J Immunol 159(11):5197–5200

    CAS  PubMed  Google Scholar 

  5. Mueller SN, Ahmed R (2009) High antigen levels are the cause of T cell exhaustion during chronic viral infection. Proc Natl Acad Sci U S A 106(21):8623–8628

    CAS  CrossRef  Google Scholar 

  6. Crespo J, Sun H, Welling TH, Tian Z, Zou W (2013) T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr Opin Immunol 25(2):214–221

    CAS  CrossRef  Google Scholar 

  7. Jiang Y, Li Y, Zhu B (2015) T-cell exhaustion in the tumor microenvironment. Cell Death Dis 6:e1792

    CAS  CrossRef  Google Scholar 

  8. Garcia V, Richter K, Graw F, Oxenius A, Regoes RR (2015) Estimating the in vivo killing efficacy of cytotoxic T lymphocytes across different peptide-MHC complex densities. PLoS Comput Biol 11(5):e1004178

    CrossRef  Google Scholar 

  9. Barber DL, Wherry EJ, Ahmed R (2003) Cutting edge: rapid in vivo killing by memory CD8 T cells. J Immunol 171(1):27–31

    CAS  CrossRef  Google Scholar 

  10. Berraondo P, Nouze C, Preville X, Ladant D, Leclerc C (2007) Eradication of large tumors in mice by a tritherapy targeting the innate, adaptive, and regulatory components of the immune system. Cancer Res 67(18):8847–8855

    CAS  CrossRef  Google Scholar 

  11. Chaoul N, Fayolle C, Desrues B, Oberkampf M, Tang A, Ladant D et al (2015) Rapamycin impairs antitumor CD8+ T-cell responses and vaccine-induced tumor eradication. Cancer Res 75(16):3279–3291

    CAS  CrossRef  Google Scholar 

  12. Dadaglio G, Fayolle C, Zhang X, Ryffel B, Oberkampf M, Felix T et al (2014) Antigen targeting to CD11b+ dendritic cells in association with TLR4/TRIF signaling promotes strong CD8+ T cell responses. J Immunol 193(4):1787–1798

    CAS  CrossRef  Google Scholar 

  13. Oberkampf M, Guillerey C, Mouries J, Rosenbaum P, Fayolle C, Bobard A et al (2018) Mitochondrial reactive oxygen species regulate the induction of CD8(+) T cells by plasmacytoid dendritic cells. Nat Commun 9(1):2241

    CrossRef  Google Scholar 

  14. Hervas-Stubbs S, Olivier A, Boisgerault F, Thieblemont N, Leclerc C (2007) TLR3 ligand stimulates fully functional memory CD8+ T cells in the absence of CD4+ T-cell help. Blood 109(12):5318–5326

    CAS  CrossRef  Google Scholar 

Download references

Acknowledgments

This protocol was adapted from a work supported by grants from the Ligue Nationale Contre le Cancer (Equipe Labellisée, 2014). N. Chaoul was supported by Conseil Regional Île-de-France/Canceropole Île-de-France and Fondation de France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nada Chaoul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Chaoul, N., Dadaglio, G. (2021). Antigen-Specific In Vivo Killing Assay. In: Gigante, M., Ranieri, E. (eds) Cytotoxic T-Cells. Methods in Molecular Biology, vol 2325. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1507-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1507-2_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1506-5

  • Online ISBN: 978-1-0716-1507-2

  • eBook Packages: Springer Protocols