Skip to main content

Culturing Mycobacteria

Part of the Methods in Molecular Biology book series (MIMB,volume 2314)

Abstract

Building upon the foundational research of Robert Koch, who demonstrated the ability to grow Mycobacterium tuberculosis for the first time in 1882 using media made of coagulated bovine serum, microbiologists have continued to develop new and more efficient ways to grow mycobacteria. Presently, all known mycobacterial species can be grown in the laboratory using either axenic culture techniques or in vivo passage in laboratory animals. This chapter provides conventional protocols to grow mycobacteria for diagnostic purposes directly from clinical specimens, as well as in research laboratories for scientific purposes. Detailed protocols used for production of M. tuberculosis in large scale (under normoxic and hypoxic conditions) in bioreactors and for production of obligate intracellular pathogens such as Mycobacterium leprae and “Mycobacterium lepromatosis” using athymic nude mice and armadillos are provided.

Key words

  • Mycobacterium tuberculosis
  • Mycobacterium leprae
  • Nontuberculous mycobacteria
  • Normoxic culture
  • Hypoxic culture
  • Large-scale production of mycobacteria

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-1460-0_1
  • Chapter length: 58 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-1460-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   349.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hazbon MH, Rigouts L, Schito M, Ezewudo M, Kudo T, Itoh T, Ohkuma M, Kiss K, Wu L, Ma J, Hamada M, Strong M, Salfinger M, Daley CL, Nick JA, Lee JS, Rastogi N, Couvin D, Hurtado-Ortiz R, Bizet C, Suresh A, Rodwell T, Albertini A, Lacourciere KA, Deheer-Graham A, Alexander S, Russell JE, Bradford R, Riojas MA (2018) Mycobacterial biomaterials and resources for researchers. Pathog Dis 76(4):fty042

    CrossRef  Google Scholar 

  2. Sharma R, Singh P, McCoy RC, Lenz SM, Donovan K, Ochoa MT, Estrada-Garcia I, Silva-Miranda M, Jurado-Santa Cruz F, Balagon MF, Stryjewska B, Scollard DM, Pena MT, Lahiri R, Williams DL, Truman RW, Adams LB (2019) Isolation of Mycobacterium lepromatosis and development of molecular diagnostic assays to distinguish M. leprae and M. lepromatosis. Clin Infect Dis 71(8):e262–e269

    CrossRef  Google Scholar 

  3. Tortoli E (2006) The new mycobacteria: an update. FEMS Immunol Med Microbiol 48:159–178

    CAS  CrossRef  Google Scholar 

  4. Gupta RS, Lo B, Son J (2018) Phylogenomics and comparative genomic studies robustly support division of the genus Mycobacterium into an emended genus Mycobacterium and four novel genera. Front Microbiol 9:67

    CrossRef  Google Scholar 

  5. Tortoli E, Brown-Elliott BA, Chalmers JD, Cirillo DM, Daley CL, Emler S, Floto RA, Garcia MJ, Hoefsloot W, Koh WJ, Lange C, Loebinger M, Maurer FP, Morimoto K, Niemann S, Richter E, Turenne CY, Vasireddy R, Vasireddy S, Wagner D, Wallace RJ Jr, Wengenack N, van Ingen J (2019) Same meat, different gravy: ignore the new names of mycobacteria. Eur Respir J 54:1900795

    CrossRef  Google Scholar 

  6. Cook GM, Berney M, Gebhard S, Heinemann M, Cox RA, Danilchanka O, Niederweis M (2009) Physiology of mycobacteria. Adv Microb Physiol 55:81–319

    CAS  CrossRef  Google Scholar 

  7. Chosewood LC, Wilson DE, Centers for Disease Control and Prevention (U.S.), National Institutes of Health (U.S.) (2009) Biosafety in microbiological and biomedical laboratories. U.S. Dept. of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institutes of Health, Washington, DC

    Google Scholar 

  8. Whittier S, Olivier K, Gilligan P, Knowles M, Della-Latta P (1997) Proficiency testing of clinical microbiology laboratories using modified decontamination procedures for detection of nontuberculous mycobacteria in sputum samples from cystic fibrosis patients. The nontuberculous mycobacteria in Cystic Fibrosis Study Group. J Clin Microbiol 35:2706–2708

    CAS  CrossRef  Google Scholar 

  9. Riojas MA, McGough KJ, Rider-Riojas CJ, Rastogi N, Hazbon MH (2018) Phylogenomic analysis of the species of the Mycobacterium tuberculosis complex demonstrates that Mycobacterium africanum, Mycobacterium bovis, Mycobacterium caprae, Mycobacterium microti and Mycobacterium pinnipedii are later heterotypic synonyms of Mycobacterium tuberculosis. Int J Syst Evol Microbiol 68:324–332

    CAS  CrossRef  Google Scholar 

  10. Han XY, Seo YH, Sizer KC, Schoberle T, May GS, Spencer JS, Li W, Nair RG (2008) A new Mycobacterium species causing diffuse lepromatous leprosy. Am J Clin Pathol 130:856–864

    CAS  CrossRef  Google Scholar 

  11. Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, Holland SM, Horsburgh R, Huitt G, Iademarco MF, Iseman M, Olivier K, Ruoss S, von Reyn CF, Wallace RJ Jr, Winthrop K, Subcommittee ATSMD, American Thoracic S, Infectious Disease Society of A (2007) An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 175:367–416

    CAS  CrossRef  Google Scholar 

  12. Brown-Elliott BA, Wallace RJ Jr (2002) Clinical and taxonomic status of pathogenic nonpigmented or late-pigmenting rapidly growing mycobacteria. Clin Microbiol Rev 15:716–746

    CrossRef  Google Scholar 

  13. Brown-Elliott BA, Philley JV (2017) Rapidly growing mycobacteria. Microbiol Spectr 5

    Google Scholar 

  14. Daley CL, Iaccarino JM, Lange C, Cambau E, Wallace RJ Jr, Andrejak C, Bottger EC, Brozek J, Griffith DE, Guglielmetti L, Huitt GA, Knight SL, Leitman P, Marras TK, Olivier KN, Santin M, Stout JE, Tortoli E, van Ingen J, Wagner D, Winthrop KL (2020) Treatment of nontuberculous mycobacterial pulmonary disease: an official ATS/ERS/ESCMID/IDSA clinical practice guideline. Eur Respir J 56:2000535

    CrossRef  Google Scholar 

  15. Forbes BA, Hall GS, Miller MB, Novak SM, Rowlinson MC, Salfinger M, Somoskovi A, Warshauer DM, Wilson ML (2018) Practice guidelines for clinical microbiology laboratories: mycobacteria. Clin Microbiol Rev 31:e00038-17

    CrossRef  Google Scholar 

  16. Stinson KW, Eisenach K, Kayes S, Matsumoto M, Siddiqi S, Nakashima S, Hashizume H, Timm J, Morrissey A, Mendoza M, Mathai P (eds) (2014) Mycobacteriology laboratory manual. Stop TB Partnership, Switzerland

    Google Scholar 

  17. Bange FC, Bottger EC (2002) Improved decontamination method for recovering mycobacteria from patients with cystic fibrosis. Eur J Clin Microbiol Infect Dis 21:546–548

    CrossRef  Google Scholar 

  18. Buijtels PC, Petit PL (2005) Comparison of NaOH-N-acetyl cysteine and sulfuric acid decontamination methods for recovery of mycobacteria from clinical specimens. J Microbiol Methods 62:83–88

    CAS  CrossRef  Google Scholar 

  19. Carroll KC, Pfaller MA, Landry ML, McAdam AJ, Patel R, Richter SS, Warnock DW (2019) Manual of clinical microbiology. ASM Press, Washington, DC

    Google Scholar 

  20. Ferroni A, Vu-Thien H, Lanotte P, Le Bourgeois M, Sermet-Gaudelus I, Fauroux B, Marchand S, Varaigne F, Berche P, Gaillard JL, Offredo C (2006) Value of the chlorhexidine decontamination method for recovery of nontuberculous mycobacteria from sputum samples of patients with cystic fibrosis. J Clin Microbiol 44:2237–2239

    CrossRef  Google Scholar 

  21. Floto RA, Olivier KN, Saiman L, Daley CL, Herrmann JL, Nick JA, Noone PG, Bilton D, Corris P, Gibson RL, Hempstead SE, Koetz K, Sabadosa KA, Sermet-Gaudelus I, Smyth AR, van Ingen J, Wallace RJ, Winthrop KL, Marshall BC, Haworth CS, Foundation USCF, European Cystic Fibrosis S (2016) US Cystic Fibrosis Foundation and European Cystic Fibrosis Society consensus recommendations for the management of non-tuberculous mycobacteria in individuals with cystic fibrosis. Thorax 71(Suppl 1):i1–i22

    CrossRef  Google Scholar 

  22. Whittier S, Hopfer RL, Knowles MR, Gilligan PH (1993) Improved recovery of mycobacteria from respiratory secretions of patients with cystic fibrosis. J Clin Microbiol 31:861–864

    CAS  CrossRef  Google Scholar 

  23. Brown-Elliott BA, Griffith DE, Wallace RJ Jr (2002) Diagnosis of nontuberculous mycobacterial infections. Clin Lab Med 22:911–925. vi

    CrossRef  Google Scholar 

  24. Steingart KR, Ng V, Henry M, Hopewell PC, Ramsay A, Cunningham J, Urbanczik R, Perkins MD, Aziz MA, Pai M (2006) Sputum processing methods to improve the sensitivity of smear microscopy for tuberculosis: a systematic review. Lancet Infect Dis 6:664–674

    CrossRef  Google Scholar 

  25. Krasnow I, Wayne LG (1966) Sputum digestion. I. The mortality rate of tubercle bacilli in various digestion systems. Tech Bull Regist Med Technol 36:34–37

    CAS  PubMed  Google Scholar 

  26. Preece CL, Perry A, Gray B, Kenna DT, Jones AL, Cummings SP, Robb A, Thomas MF, Brodlie M, O'Brien CJ, Bourke SJ, Perry JD (2016) A novel culture medium for isolation of rapidly-growing mycobacteria from the sputum of patients with cystic fibrosis. J Cyst Fibros 15:186–191

    CAS  CrossRef  Google Scholar 

  27. Brown-Elliott BA, Molina S, Fly T, Njie O, Stribley P, Stephenson D, Wallace RJ Jr, Perry JD (2019) Evaluation of a novel rapidly-growing mycobacteria medium for isolation of Mycobacterium abscessus complex from respiratory specimens from patients with bronchiectasis. Heliyon 5:e02684

    CrossRef  Google Scholar 

  28. Plongla R, Preece CL, Perry JD, Gilligan PH (2017) Evaluation of RGM medium for isolation of nontuberculous mycobacteria from respiratory samples from patients with cystic fibrosis in the United States. J Clin Microbiol 55:1469–1477

    CrossRef  Google Scholar 

  29. Kaklamanos M, Hardavella G, Trigidou R, Dionellis G, Paissios N, Koulouris N, Goritsas C (2011) Multi-organ failure with atypical liver granulomas following intravesical Bacillus Calmette-Guerin instillation. World J Hepatol 3:79–82

    CrossRef  Google Scholar 

  30. Aranaz A, Liebana E, Gomez-Mampaso E, Galan JC, Cousins D, Ortega A, Blazquez J, Baquero F, Mateos A, Suarez G, Dominguez L (1999) Mycobacterium tuberculosis subsp. caprae subsp. nov.: a taxonomic study of a new member of the Mycobacterium tuberculosis complex isolated from goats in Spain. Int J Syst Bacteriol 49(Pt 3):1263–1273

    CAS  CrossRef  Google Scholar 

  31. Cousins DV, Bastida R, Cataldi A, Quse V, Redrobe S, Dow S, Duignan P, Murray A, Dupont C, Ahmed N, Collins DM, Butler WR, Dawson D, Rodriguez D, Loureiro J, Romano MI, Alito A, Zumarraga M, Bernardelli A (2003) Tuberculosis in seals caused by a novel member of the Mycobacterium tuberculosis complex: Mycobacterium pinnipedii sp. nov. Int J Syst Evol Microbiol 53:1305–1314

    CAS  CrossRef  Google Scholar 

  32. Scollard DMTR (1999) The armadillo leprosy model with particular reference to lepromatous neuritis. In: Oto Zak MS (ed) Handbook of animal models of infection. Academic Press, San Diego

    Google Scholar 

  33. Truman RW, Sanchez RM (1993) Armadillos: models for leprosy. Lab Anim 22:28–32

    Google Scholar 

  34. Draper P (1976) Cell walls of Mycobacterium leprae. Int J Lepr Other Mycobact Dis 44:95–98

    CAS  PubMed  Google Scholar 

  35. Draper P (1983) The bacteriology of Mycobacterium leprae. Tubercle 64:43–56

    CAS  CrossRef  Google Scholar 

  36. Draper P. Purification of Mycobacterium leprae. World Health Organization, TDR/IMMLEP-SWG 18980. Report of the fifth meeting of the Scientific Working Group on the Immunology of Leprosy (IMMLEP)

    Google Scholar 

  37. CDC (1990) New culture identification procedure initiated in CDC mycobacteriology lab. In: Control CfD (editor), p. 13

    Google Scholar 

  38. Buchan BW, Riebe KM, Timke M, Kostrzewa M, Ledeboer NA (2014) Comparison of MALDI-TOF MS with HPLC and nucleic acid sequencing for the identification of Mycobacterium species in cultures using solid medium and broth. Am J Clin Pathol 141:25–34

    CAS  CrossRef  Google Scholar 

  39. Chang KC, Yew WW, Zhang Y (2011) Pyrazinamide susceptibility testing in Mycobacterium tuberculosis: a systematic review with meta-analyses. Antimicrob Agents Chemother 55:4499–4505

    CAS  CrossRef  Google Scholar 

  40. Bergey DH, Krieg NR, Holt JG (1984) Bergey’s manual of systematic bacteriology. Williams & Wilkins, Baltimore

    Google Scholar 

  41. Duthie MS, Truman RW, Goto W, O'Donnell J, Hay MN, Spencer JS, Carter D, Reed SG (2011) Insight toward early diagnosis of leprosy through analysis of the developing antibody responses of Mycobacterium leprae-infected armadillos. Clin Vaccine Immunol 18:254–259

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Wallace, E. et al. (2021). Culturing Mycobacteria. In: Parish, T., Kumar, A. (eds) Mycobacteria Protocols. Methods in Molecular Biology, vol 2314. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1460-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1460-0_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1459-4

  • Online ISBN: 978-1-0716-1460-0

  • eBook Packages: Springer Protocols