Skip to main content

Identification and Characterization of Mycobacterial Species Using Whole-Genome Sequences

Part of the Methods in Molecular Biology book series (MIMB,volume 2314)

Abstract

Whole-genome sequencing (WGS) has shown immense value in enabling identification and characterization of bacterial taxa. This is particularly true for mycobacteria, where culture-based characterization becomes delayed by the inherently slow growth rate of these organisms. This chapter reviews the general techniques behind WGS and their optimization, existing techniques for species-level identification and the advantages of WGS for this purpose, and a variety of useful tools for the genomic characterization of mycobacterial strains.

Key words

  • Whole-genome sequence
  • DNA
  • Sequencing
  • ANI
  • dDDH
  • Species identification
  • Mycobacteria

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-1460-0_19
  • Chapter length: 59 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-1460-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   349.99
Price excludes VAT (USA)
Fig. 1

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, Hutchison CA, Slocombe PM, Smith M (1977) Nucleotide sequence of bacteriophage phi X174 DNA. Nature 265(5596):687–695. https://doi.org/10.1038/265687a0

    CAS  CrossRef  PubMed  Google Scholar 

  2. Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291(5507):1304–1351. https://doi.org/10.1126/science.1058040

    CAS  CrossRef  PubMed  Google Scholar 

  3. International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921. https://doi.org/10.1038/35057062

    CrossRef  Google Scholar 

  4. International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human genome. Nature 431(7011):931–945. https://doi.org/10.1038/nature03001

    CAS  CrossRef  Google Scholar 

  5. Nowoshilow S, Schloissnig S, Fei JF, Dahl A, Pang AWC, Pippel M, Winkler S, Hastie AR, Young G, Roscito JG, Falcon F, Knapp D, Powell S, Cruz A, Cao H, Habermann B, Hiller M, Tanaka EM, Myers EW (2018) The axolotl genome and the evolution of key tissue formation regulators. Nature 554(7690):50–55. https://doi.org/10.1038/nature25458

    CAS  CrossRef  PubMed  Google Scholar 

  6. Wetterstrand K (2019) DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program (GSP). http://www.genome.gov/sequencingcostsdata. Accessed Feb 12, 2020

  7. National Center for Biotechnology Information, U.S. National Library of Medicine (2019) GenBank and WGS Statistics. https://www.ncbi.nlm.nih.gov/genbank/statistics/. Accessed Feb 12, 2020

  8. Köser CU, Ellington MJ, Peacock SJ (2014) Whole-genome sequencing to control antimicrobial resistance. Trends Genet 30(9):401–407. https://doi.org/10.1016/j.tig.2014.07.003

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  9. Magee JG, Ward AC (2015) Mycobacterium. In: Bergey’s Manual of systematics of archaea and bacteria. Wiley, Hoboken, New Jersey, pp 1–84. https://doi.org/10.1002/9781118960608.gbm00029

    CrossRef  Google Scholar 

  10. CLSI (2018) Laboratory detection and identification of mycobacteria, 2nd Ed. edn. Clinical and Laboratory Standards Institute, Wayne, PA

    Google Scholar 

  11. Tortoli E, Meehan CJ, Grottola A, Fregni Serpini G, Fabio A, Trovato A, Pecorari M, Cirillo DM (2019) Genome-based taxonomic revision detects a number of synonymous taxa in the genus Mycobacterium. Infect Genet Evol 75:103983. https://doi.org/10.1016/j.meegid.2019.103983

    CAS  CrossRef  PubMed  Google Scholar 

  12. Gupta RS, Lo B, Son J (2018) Phylogenomics and comparative genomic studies robustly support division of the genus Mycobacterium into an emended genus Mycobacterium and four novel genera. Front Microbiol 9:67. https://doi.org/10.3389/fmicb.2018.00067

    CrossRef  PubMed  PubMed Central  Google Scholar 

  13. Tortoli E, Brown-Elliott BA, Chalmers JD, Cirillo DM, Daley CL, Emler S, Floto RA, Garcia MJ, Hoefsloot W, Koh WJ, Lange C, Loebinger M, Maurer FP, Morimoto K, Niemann S, Richter E, Turenne CY, Vasireddy R, Vasireddy S, Wagner D, Wallace RJ Jr, Wengenack N, van Ingen J (2019) Same meat, different gravy: ignore the new names of mycobacteria. Eur Respir J 54(1):1900795. https://doi.org/10.1183/13993003.00795-2019

    CrossRef  PubMed  Google Scholar 

  14. Fedrizzi T, Meehan CJ, Grottola A, Giacobazzi E, Fregni Serpini G, Tagliazucchi S, Fabio A, Bettua C, Bertorelli R, De Sanctis V, Rumpianesi F, Pecorari M, Jousson O, Tortoli E, Segata N (2017) Genomic characterization of nontuberculous mycobacteria. Sci Rep 7:45258. https://doi.org/10.1038/srep45258

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  15. Tortoli E, Fedrizzi T, Meehan CJ, Trovato A, Grottola A, Giacobazzi E, Serpini GF, Tagliazucchi S, Fabio A, Bettua C, Bertorelli R, Frascaro F, De Sanctis V, Pecorari M, Jousson O, Segata N, Cirillo DM (2017) The new phylogeny of the genus Mycobacterium: the old and the news. Infect Genet Evol 56:19–25. https://doi.org/10.1016/j.meegid.2017.10.013

    CrossRef  PubMed  Google Scholar 

  16. Rosselló-Móra R, Amann R (2015) Past and future species definitions for Bacteria and Archaea. Syst Appl Microbiol 38(4):209–216. https://doi.org/10.1016/j.syapm.2015.02.001

    CrossRef  PubMed  Google Scholar 

  17. Riojas MA, McGough KJ, Rider-Riojas CJ, Rastogi N, Hazbon MH (2018) Phylogenomic analysis of the species of the Mycobacterium tuberculosis complex demonstrates that Mycobacterium africanum, Mycobacterium bovis, Mycobacterium caprae, Mycobacterium microti and Mycobacterium pinnipedii are later heterotypic synonyms of Mycobacterium tuberculosis. Int J Syst Evol Microbiol 68(1):324–332. https://doi.org/10.1099/ijsem.0.002507

    CAS  CrossRef  PubMed  Google Scholar 

  18. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74(12):5463–5467. https://doi.org/10.1073/pnas.74.12.5463

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  19. Heather JM, Chain B (2016) The sequence of sequencers: the history of sequencing DNA. Genomics 107(1):1–8. https://doi.org/10.1016/j.ygeno.2015.11.003

    CAS  CrossRef  PubMed  Google Scholar 

  20. Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17(6):333–351. https://doi.org/10.1038/nrg.2016.49

    CAS  CrossRef  PubMed  Google Scholar 

  21. Illumina, Inc. (2010) Technology Spotlight: Illumina® Sequencing

    Google Scholar 

  22. Giani AM, Gallo GR, Gianfranceschi L, Formenti G (2020) Long walk to genomics: history and current approaches to genome sequencing and assembly. Comput Struct Biotechnol J 18:9–19. https://doi.org/10.1016/j.csbj.2019.11.002

    CAS  CrossRef  PubMed  Google Scholar 

  23. Pacific Biosciences of California, Inc. SMRT Sequencing—How it Works. vol PS100–032919

    Google Scholar 

  24. McCombie WR, McPherson JD, Mardis ER (2019) Next-generation sequencing technologies. Cold Spring Harb Perspect Med 9(11). https://doi.org/10.1101/cshperspect.a036798

  25. Marrakchi H, Laneelle MA, Daffe M (2014) Mycolic acids: structures, biosynthesis, and beyond. Chem Biol 21(1):67–85. https://doi.org/10.1016/j.chembiol.2013.11.011

    CAS  CrossRef  PubMed  Google Scholar 

  26. Jackson M (2014) The mycobacterial cell envelope-lipids. Cold Spring Harb Perspect Med 4(10). https://doi.org/10.1101/cshperspect.a021105

  27. Amaro A, Duarte E, Amado A, Ferronha H, Botelho A (2008) Comparison of three DNA extraction methods for Mycobacterium bovis, Mycobacterium tuberculosis and Mycobacterium avium subsp. avium. Lett Appl Microbiol 47(1):8–11. https://doi.org/10.1111/j.1472-765X.2008.02372.x

    CAS  CrossRef  PubMed  Google Scholar 

  28. Epperson LE, Strong M (2020) A scalable, efficient, and safe method to prepare high quality DNA from mycobacteria and other challenging cells. J Clin Tuberc Other Mycobact Dis 19:100150. https://doi.org/10.1016/j.jctube.2020.100150

    CrossRef  PubMed  PubMed Central  Google Scholar 

  29. Hasan NA, Epperson LE, Lawsin A, Rodger RR, Perkins KM, Halpin AL, Perry KA, Moulton-Meissner H, Diekema DJ, Crist MB, Perz JF, Salfinger M, Daley CL, Strong M (2019) Genomic analysis of cardiac surgery-associated Mycobacterium chimaera infections, United States. Emerg Infect Dis 25(3):559–563. https://doi.org/10.3201/eid2503.181282

    CrossRef  PubMed  PubMed Central  Google Scholar 

  30. Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

  31. De Coster W, D'Hert S, Schultz DT, Cruts M, Van Broeckhoven C (2018) NanoPack: visualizing and processing long-read sequencing data. Bioinformatics 34(15):2666–2669. https://doi.org/10.1093/bioinformatics/bty149

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  32. Chen S, Zhou Y, Chen Y, Gu J (2018) Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34(17):i884–i890. https://doi.org/10.1093/bioinformatics/bty560

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  33. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  34. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetJ 17(1). https://doi.org/10.14806/ej.17.1.200

  35. Wick RR Filtlong. https://github.com/rrwick/Filtlong

  36. Illumina, Inc. Effects of Index Misassignment on Multiplexing and Downstream Analysis. vol 770–2017–004-D

    Google Scholar 

  37. Wick RR, Judd LM, Holt KE (2018) Deepbinner: Demultiplexing barcoded Oxford Nanopore reads with deep convolutional neural networks. PLoS Comput Biol 14(11):e1006583. https://doi.org/10.1371/journal.pcbi.1006583

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  38. Wood DE, Lu J, Langmead B (2019) Improved metagenomic analysis with kraken 2. Genome Biol 20(1):257. https://doi.org/10.1186/s13059-019-1891-0

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  39. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9(4):357–359. https://doi.org/10.1038/nmeth.1923

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  40. Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997

    Google Scholar 

  41. Zerbino DR (2010) Using the velvet de novo assembler for short-read sequencing technologies. Curr Protoc Bioinformatics. Chapter 11:Unit 11 15. https://doi.org/10.1002/0471250953.bi1105s31

  42. Jackman SD, Vandervalk BP, Mohamadi H, Chu J, Yeo S, Hammond SA, Jahesh G, Khan H, Coombe L, Warren RL, Birol I (2017) ABySS 2.0: resource-efficient assembly of large genomes using a bloom filter. Genome Res 27(5):768–777. https://doi.org/10.1101/gr.214346.116

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  43. Tadpole Guide. https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/tadpole-guide/

  44. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477. https://doi.org/10.1089/cmb.2012.0021

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  45. Chevreux B MIRA—The Genome and Transcriptome Assembler and Mapper. https://github.com/bachev/mira

  46. Li H seqtk. https://github.com/lh3/seqtk

  47. Shen W, Le S, Li Y, Hu F (2016) SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS One 11(10):e0163962. https://doi.org/10.1371/journal.pone.0163962

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  48. Wick RR, Judd LM, Gorrie CL, Holt KE (2017) Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 13(6):e1005595. https://doi.org/10.1371/journal.pcbi.1005595

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  49. Li H (2016) Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics 32(14):2103–2110. https://doi.org/10.1093/bioinformatics/btw152

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  50. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM (2017) Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 27(5):722–736

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  51. Kolmogorov M, Yuan J, Lin Y, Pevzner PA (2019) Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 37(5):540–546. https://doi.org/10.1038/s41587-019-0072-8

    CAS  CrossRef  PubMed  Google Scholar 

  52. Wick RR, Holt KE (2019) Benchmarking of long-read assemblers for prokaryote whole genome sequencing. F1000Res 8:2138. https://doi.org/10.12688/f1000research.21782.1

    CAS  CrossRef  PubMed  Google Scholar 

  53. Vaser R, Sović I, Nagarajan N, Šikić M (2017) Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res 27(5):737–746

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  54. Oxford Nanopore Technologies (2018) Medaka. https://github.com/nanoporetech/medaka

  55. Simpson J Nanopolish. https://github.com/jts/nanopolish

  56. De Maio N, Shaw LP, Hubbard A, George S, Sanderson ND, Swann J, Wick R, AbuOun M, Stubberfield E, Hoosdally SJ, Crook DW, Peto TEA, Sheppard AE, Bailey MJ, Read DS, Anjum MF, Walker AS, Stoesser N, On Behalf Of The Rehab C (2019) Comparison of long-read sequencing technologies in the hybrid assembly of complex bacterial genomes. Microb Genom 5(9):e000294. https://doi.org/10.1099/mgen.0.000294

    CrossRef  PubMed Central  Google Scholar 

  57. Crusoe MR, Alameldin HF, Awad S, Boucher E, Caldwell A, Cartwright R, Charbonneau A, Constantinides B, Edvenson G, Fay S, Fenton J, Fenzl T, Fish J, Garcia-Gutierrez L, Garland P, Gluck J, Gonzalez I, Guermond S, Guo J, Gupta A, Herr JR, Howe A, Hyer A, Harpfer A, Irber L, Kidd R, Lin D, Lippi J, Mansour T, McA'Nulty P, McDonald E, Mizzi J, Murray KD, Nahum JR, Nanlohy K, Nederbragt AJ, Ortiz-Zuazaga H, Ory J, Pell J, Pepe-Ranney C, Russ ZN, Schwarz E, Scott C, Seaman J, Sievert S, Simpson J, Skennerton CT, Spencer J, Srinivasan R, Standage D, Stapleton JA, Steinman SR, Stein J, Taylor B, Trimble W, Wiencko HL, Wright M, Wyss B, Zhang Q, Zyme E, Brown CT (2015) The khmer software package: enabling efficient nucleotide sequence analysis. F1000Res 4:900. https://doi.org/10.12688/f1000research.6924.1

    CrossRef  PubMed  PubMed Central  Google Scholar 

  58. BBNorm Guide. https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbnorm-guide/

  59. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  60. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, Jordan T, Shakir K, Roazen D, Thibault J, Banks E, Garimella KV, Altshuler D, Gabriel S, DePristo MA (2013) From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics 43:11 10 11–11 10 33. https://doi.org/10.1002/0471250953.bi1110s43

    CrossRef  Google Scholar 

  61. Kubica GP, Kim TH, Dunbar FP (1972) Designation of strain H37Rv as the Neotype of Mycobacterium tuberculosis. Int J Syst Bacteriol 22(2):99–106. https://doi.org/10.1099/00207713-22-2-99

    CrossRef  Google Scholar 

  62. Tindall BJ, Rossello-Mora R, Busse HJ, Ludwig W, Kampfer P (2010) Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60(Pt 1):249–266. https://doi.org/10.1099/ijs.0.016949-0

    CAS  CrossRef  PubMed  Google Scholar 

  63. Avery OT, Macleod CM, McCarty M (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a Desoxyribonucleic [sic] acid fraction isolated from pneumococcus type III. J Exp Med 79(2):137–158. https://doi.org/10.1084/jem.79.2.137

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  64. Agaisse H, Gominet M, Økstad OA, Kolstø A-B, Lereclus D (1999) PlcR is a pleiotropic regulator of extracellular virulence factor gene expression in Bacillus thuringiensis. Mol Microbiol 32(5):1043–1053. https://doi.org/10.1046/j.1365-2958.1999.01419.x

    CAS  CrossRef  PubMed  Google Scholar 

  65. Slamti L, Perchat S, Gominet M, Vilas-Boas G, Fouet A, Mock M, Sanchis V, Chaufaux J, Gohar M, Lereclus D (2004) Distinct mutations in PlcR explain why some strains of the Bacillus cereus group are nonhemolytic. J Bacteriol 186(11):3531–3538. https://doi.org/10.1128/JB.186.11.3531-3538.2004

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  66. Sastalla I, Maltese LM, Pomerantseva OM, Pomerantsev AP, Keane-Myers A, Leppla SH (2010) Activation of the latent PlcR regulon in Bacillus anthracis. Microbiology 156(Pt 10):2982–2993. https://doi.org/10.1099/mic.0.041418-0

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  67. Salamitou S, Ramisse F, Brehelin M, Bourguet D, Gilois N, Gominet M, Hernandez E, Lereclus D (2000) The plcR regulon is involved in the opportunistic properties of Bacillus thuringiensis and Bacillus cereus in mice and insects. Microbiology 146(Pt 11):2825–2832. https://doi.org/10.1099/00221287-146-11-2825

    CAS  CrossRef  PubMed  Google Scholar 

  68. Callegan MC, Kane ST, Cochran DC, Gilmore MS, Gominet M, Lereclus D (2003) Relationship of plcR-regulated factors to Bacillus endophthalmitis virulence. Infect Immun 71(6):3116–3124. https://doi.org/10.1128/iai.71.6.3116-3124.2003

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  69. Roth A, Fischer M, Hamid ME, Michalke S, Ludwig W, Mauch H (1998) Differentiation of phylogenetically related slowly growing mycobacteria based on 16S-23S rRNA gene internal transcribed spacer sequences. J Clin Microbiol 36(1):139–147

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  70. Tortoli E (2003) Impact of genotypic studies on mycobacterial taxonomy: the new mycobacteria of the 1990s. Clin Microbiol Rev 16(2):319–354. https://doi.org/10.1128/cmr.16.2.319-354.2003

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  71. Clarridge JE 3rd (2004) Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clinical Microbiol Rev 17(4):840–862, table of contents. https://doi.org/10.1128/CMR.17.4.840-862.2004

    CAS  CrossRef  Google Scholar 

  72. Dobner P, Feldmann K, Rifai M, Löscher T, Rinder H (1996) Rapid identification of mycobacterial species by PCR amplification of hypervariable 16S rRNA gene promoter region. J Clin Microbiol 34(4):866

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  73. Kim SH, Shin JH (2018) Identification of nontuberculous mycobacteria using multilocous sequence analysis of 16S rRNA, hsp65, and rpoB. J Clin Lab Anal 32(1). https://doi.org/10.1002/jcla.22184

  74. Adekambi T, Drancourt M (2004) Dissection of phylogenetic relationships among 19 rapidly growing Mycobacterium species by 16S rRNA, hsp65, sodA, recA and rpoB gene sequencing. Int J Syst Evol Microbiol 54(Pt 6):2095–2105. https://doi.org/10.1099/ijs.0.63094-0

    CAS  CrossRef  PubMed  Google Scholar 

  75. Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T, Feil EJ, Stackebrandt E, Van de Peer Y, Vandamme P, Thompson FL, Swings J (2005) Opinion: re-evaluating prokaryotic species. Nat Rev Microbiol 3(9):733–739. https://doi.org/10.1038/nrmicro1236

    CAS  CrossRef  PubMed  Google Scholar 

  76. Glaeser SP, Kampfer P (2015) Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Syst Appl Microbiol 38(4):237–245. https://doi.org/10.1016/j.syapm.2015.03.007

    CAS  CrossRef  PubMed  Google Scholar 

  77. Saha MS, Pal S, Sarkar I, Roy A, Das Mohapatra PK, Sen A (2019) Comparative genomics of Mycobacterium reveals evolutionary trends of M. avium complex. Genomics 111(3):426–435. https://doi.org/10.1016/j.ygeno.2018.02.019

    CAS  CrossRef  PubMed  Google Scholar 

  78. Lu B, Dong HY, Zhao XQ, Liu ZG, Liu HC, Zhang YY, Jiang Y, Wan KL (2012) A new multilocus sequence analysis scheme for Mycobacterium tuberculosis. Biomed Environ Sci 25(6):620–629. https://doi.org/10.3967/0895-3988.2012.06.003

    CAS  CrossRef  PubMed  Google Scholar 

  79. Tan JL, Khang TF, Ngeow YF, Choo SW (2013) A phylogenomic approach to bacterial subspecies classification: proof of concept in Mycobacterium abscessus. BMC Genomics 14:879. https://doi.org/10.1186/1471-2164-14-879

    CrossRef  PubMed  PubMed Central  Google Scholar 

  80. Alexander DC, Marras TK, Ma JH, Mirza S, Liu D, Kus JV, Soualhine H, Escuyer V, Warshauer D, Brode SK, Farrell DJ, Jamieson FB (2014) Multilocus sequence typing of Mycobacterium xenopi. J Clin Microbiol 52(11):3973–3977. https://doi.org/10.1128/JCM.01601-14

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  81. Kolb J, Hillemann D, Mobius P, Reetz J, Lahiri A, Lewin A, Rusch-Gerdes S, Richter E (2014) Genetic characterization of German Mycobacterium avium strains isolated from different hosts and specimens by multilocus sequence typing. International journal of medical microbiology : IJMM 304(8):941–948. https://doi.org/10.1016/j.ijmm.2014.06.001

    CAS  CrossRef  PubMed  Google Scholar 

  82. Cheng A, Sun HY, Tsai YT, Chang SY, Wu UI, Hsueh PR, Sheng WH, Chen YC, Chang SC (2019) Comparing the Utilities of Different Multilocus Sequence Typing Schemes for identifying outbreak strains of Mycobacterium abscessus subsp. massiliense. J Clin Microbiol 58(1). https://doi.org/10.1128/JCM.01304-19

  83. Macheras E, Konjek J, Roux AL, Thiberge JM, Bastian S, Leao SC, Palaci M, Sivadon-Tardy V, Gutierrez C, Richter E, Rusch-Gerdes S, Pfyffer GE, Bodmer T, Jarlier V, Cambau E, Brisse S, Caro V, Rastogi N, Gaillard JL, Heym B (2014) Multilocus sequence typing scheme for the Mycobacterium abscessus complex. Res Microbiol 165(2):82–90. https://doi.org/10.1016/j.resmic.2013.12.003

    CAS  CrossRef  PubMed  Google Scholar 

  84. Wuzinski M, Bak AK, Petkau A, WH BD, Soualhine H, Sharma MK (2019) A multilocus sequence typing scheme for Mycobacterium abscessus complex (MAB-multilocus sequence typing) using whole-genome sequencing data. Int J Mycobacteriol 8(3):273–280. https://doi.org/10.4103/ijmy.ijmy_106_19

    CAS  CrossRef  PubMed  Google Scholar 

  85. Hayashi Sant'Anna F, Bach E, Porto RZ, Guella F, Hayashi Sant'Anna E, Passaglia LMP (2019) Genomic metrics made easy: what to do and where to go in the new era of bacterial taxonomy. Crit Rev Microbiol 45(2):182–200. https://doi.org/10.1080/1040841X.2019.1569587

    CAS  CrossRef  PubMed  Google Scholar 

  86. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR, Krichevsky MI, Trüper HG, Murray RGE, Grimont PAD, Brenner DJ, Starr MP, Moore LH (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 37(4):463–464. https://doi.org/10.1099/00207713-37-4-463

    CrossRef  Google Scholar 

  87. Auch AF, von Jan M, Klenk HP, Göker M (2010) Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2(1):117–134. https://doi.org/10.4056/sigs.531120

    CrossRef  PubMed  PubMed Central  Google Scholar 

  88. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, Rooney AP, Yi H, Xu XW, De Meyer S, Trujillo ME (2018) Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68(1):461–466. https://doi.org/10.1099/ijsem.0.002516

    CAS  CrossRef  PubMed  Google Scholar 

  89. Chun J, Rainey FA (2014) Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int J Syst Evol Microbiol 64(Pt 2):316–324. https://doi.org/10.1099/ijs.0.054171-0

    CrossRef  PubMed  Google Scholar 

  90. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57(Pt 1):81–91. https://doi.org/10.1099/ijs.0.64483-0

    CAS  CrossRef  PubMed  Google Scholar 

  91. Hugenholtz P, Skarshewski A, Parks DH (2016) Genome-based microbial taxonomy coming of age. Cold Spring Harb Perspect Biol 8(6):a018085. https://doi.org/10.1101/cshperspect.a018085

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  92. Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K, Kyrpides NC, Pati A (2015) Microbial species delineation using whole genome sequences. Nucleic Acids Res 43(14):6761–6771. https://doi.org/10.1093/nar/gkv657

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  93. Konstantinidis KT, Tiedje JM (2005) Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A 102(7):2567–2572. https://doi.org/10.1073/pnas.0409727102

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  94. Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106(45):19126–19131. https://doi.org/10.1073/pnas.0906412106

    CrossRef  PubMed  PubMed Central  Google Scholar 

  95. Jain C, Rodriguez RL, Phillippy AM, Konstantinidis KT, Aluru S (2018) High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 9(1):5114. https://doi.org/10.1038/s41467-018-07641-9

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  96. Lee I, Kim YO, Park SC, Chun J (2015) OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66(2):1100–1103. https://doi.org/10.1099/ijsem.0.000760

    CAS  CrossRef  PubMed  Google Scholar 

  97. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC bioinformatics 14:60. https://doi.org/10.1186/1471-2105-14-60

    CrossRef  PubMed  PubMed Central  Google Scholar 

  98. Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V, Fiebig A, Rohde C, Rohde M, Fartmann B, Goodwin LA, Chertkov O, Reddy T, Pati A, Ivanova NN, Markowitz V, Kyrpides NC, Woyke T, Göker M, Klenk HP (2014) Complete genome sequence of DSM 30083T, the type strain (U5/41T) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci 9:2. https://doi.org/10.1186/1944-3277-9-2

    CrossRef  PubMed  PubMed Central  Google Scholar 

  99. Stackebrandt E, Frederiksen W, Garrity GM, Grimont PA, Kampfer P, Maiden MC, Nesme X, Rossello-Mora R, Swings J, Truper HG, Vauterin L, Ward AC, Whitman WB (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52(Pt 3):1043–1047. https://doi.org/10.1099/00207713-52-3-1043

    CAS  CrossRef  PubMed  Google Scholar 

  100. Rossello-Mora R (2012) Towards a taxonomy of Bacteria and Archaea based on interactive and cumulative data repositories. Environ Microbiol 14(2):318–334. https://doi.org/10.1111/j.1462-2920.2011.02599.x

    CAS  CrossRef  PubMed  Google Scholar 

  101. Sutcliffe IC, Trujillo ME, Goodfellow M (2012) A call to arms for systematists: revitalising the purpose and practises underpinning the description of novel microbial taxa. Antonie Van Leeuwenhoek 101(1):13–20. https://doi.org/10.1007/s10482-011-9664-0

    CrossRef  PubMed  Google Scholar 

  102. Thompson CC, Amaral GR, Campeao M, Edwards RA, Polz MF, Dutilh BE, Ussery DW, Sawabe T, Swings J, Thompson FL (2015) Microbial taxonomy in the post-genomic era: rebuilding from scratch? Arch Microbiol 197(3):359–370. https://doi.org/10.1007/s00203-014-1071-2

    CAS  CrossRef  PubMed  Google Scholar 

  103. Parker CT, Tindall BJ, Garrity GM (2019) International code of nomenclature of prokaryotes. Int J Syst Evol Microbiol 69(1A):S1–S111. https://doi.org/10.1099/ijsem.0.000778

    CrossRef  Google Scholar 

  104. Tagini F, Aeby S, Bertelli C, Droz S, Casanova C, Prod'hom G, Jaton K, Greub G (2019) Phylogenomics reveal that Mycobacterium kansasii subtypes are species-level lineages. Description of Mycobacterium pseudokansasii sp. nov., Mycobacterium innocens sp. nov. and Mycobacterium attenuatum sp. nov. Int J Syst Evol Microbiol 69(6):1696–1704. https://doi.org/10.1099/ijsem.0.003378

    CAS  CrossRef  PubMed  Google Scholar 

  105. Davis JJ, Wattam AR, Aziz RK, Brettin T, Butler R, Butler RM, Chlenski P, Conrad N, Dickerman A, Dietrich EM (2020) The PATRIC bioinformatics resource center: expanding data and analysis capabilities. Nucleic Acids Res 48(D1):D606–D612

    CAS  PubMed  Google Scholar 

  106. Wattam AR, Abraham D, Dalay O, Disz TL, Driscoll T, Gabbard JL, Gillespie JJ, Gough R, Hix D, Kenyon R (2013) PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res 42(D1):D581–D591

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  107. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T, Bun C, Conrad N, Dietrich EM, Disz T, Gabbard JL (2016) Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res 45(D1):D535–D542

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  108. Krueger F (2012) Trim Galore! A wrapper tool around Cutadapt and FastQC to consistently apply quality and adapter trimming to FastQ files, with some extra functionality for MspI-digested RRBS-type (Reduced Representation Bisufite-Seq) libraries. http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/. Accessed 28 04 2016

  109. Lassmann T, Hayashizaki Y, Daub CO (2010) SAMStat: monitoring biases in next generation sequencing data. Bioinformatics 27(1):130–131

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  110. Ondov BD, Bergman NH, Phillippy AM (2011) Interactive metagenomic visualization in a web browser. BMC Bioinformatics 12(1):385

    PubMed  PubMed Central  CrossRef  Google Scholar 

  111. Clausen PT, Aarestrup FM, Lund O (2018) Rapid and precise alignment of raw reads against redundant databases with KMA. BMC Bioinformatics 19(1):307

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  112. McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, Bhullar K, Canova MJ, De Pascale G, Ejim L (2013) The comprehensive antibiotic resistance database. Antimicrob Agents Chemother 57(7):3348–3357

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  113. Chen L, Xiong Z, Sun L, Yang J, Jin Q (2011) VFDB 2012 update: toward the genetic diversity and molecular evolution of bacterial virulence factors. Nucleic Acids Res 40(D1):D641–D645

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  114. Nurk S, Meleshko D, Korobeynikov A, Pevzner PA (2017) metaSPAdes: a new versatile metagenomic assembler. Genome Res 27(5):824–834

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  115. Antipov D, Hartwick N, Shen M, Raiko M, Lapidus A, Pevzner P (2016) plasmidSPAdes: assembling plasmids from whole genome sequencing data. bioRxiv:048942

    Google Scholar 

  116. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK (2014) Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9(11):e112963

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  117. Li H (2018) Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34(18):3094–3100

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  118. Wick RR, Schultz MB, Zobel J, Holt KE (2015) Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 31(20):3350–3352

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  119. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch GD (2015) RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5:8365

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  120. McNair K, Aziz RK, Pusch GD, Overbeek R, Dutilh BE, Edwards R (2018) Phage genome annotation using the RAST pipeline. In: Bacteriophages. Springer, Berlin, pp 231–238

    CrossRef  Google Scholar 

  121. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25(7):1043–1055

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  122. Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang H-Y, Cohoon M, de Crécy-Lagard V, Diaz N, Disz T, Edwards R (2005) The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 33(17):5691–5702

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  123. Parrello B, Butler R, Chlenski P, Olson R, Overbeek J, Pusch GD, Vonstein V, Overbeek R (2019) A machine learning-based service for estimating quality of genomes using PATRIC. BMC Bioinformatics 20(1):1–9

    CrossRef  Google Scholar 

  124. Davis JJ, Gerdes S, Olsen GJ, Olson R, Pusch GD, Shukla M, Vonstein V, Wattam AR, Yoo H (2016) PATtyFams: protein families for the microbial genomes in the PATRIC database. Front Microbiol 7:118

    PubMed  PubMed Central  CrossRef  Google Scholar 

  125. Antonopoulos DA, Assaf R, Aziz RK, Brettin T, Bun C, Conrad N, Davis JJ, Dietrich EM, Disz T, Gerdes S (2017) PATRIC as a unique resource for studying antimicrobial resistance. Brief Bioinform 20(4):1094–1102

    PubMed Central  CrossRef  CAS  Google Scholar 

  126. Davis JJ, Boisvert S, Brettin T, Kenyon RW, Mao C, Olson R, Overbeek R, Santerre J, Shukla M, Wattam AR (2016) Antimicrobial resistance prediction in PATRIC and RAST. Sci Rep 6:27930

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  127. Feldgarden M, Brover V, Haft DH, Prasad AB, Slotta DJ, Tolstoy I, Tyson GH, Zhao S, Hsu C-H, McDermott PF (2019) Validating the AMRFinder tool and resistance gene database by using antimicrobial resistance genotype-phenotype correlations in a collection of isolates. Antimicrob Agents Chemother 63(11):e00483–e00419

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  128. Sayers S, Li L, Ong E, Deng S, Fu G, Lin Y, Yang B, Zhang S, Fa Z, Zhao B (2019) Victors: a web-based knowledge base of virulence factors in human and animal pathogens. Nucleic Acids Res 47(D1):D693–D700

    CAS  PubMed  CrossRef  Google Scholar 

  129. Mao C, Abraham D, Wattam AR, Wilson MJ, Shukla M, Yoo HS, Sobral BW (2015) Curation, integration and visualization of bacterial virulence factors in PATRIC. Bioinformatics 31(2):252–258

    CAS  PubMed  CrossRef  Google Scholar 

  130. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, Phillippy AM (2016) Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 17(1):132

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  131. Darling AE, Mau B, Perna NT (2010) progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5(6):e11147

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  132. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  133. Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I, Hamelryck T, Kauff F, Wilczynski BJB (2009) Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25(11):1422–1423

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  134. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1312–1313

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  135. Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57(5):758–771

    PubMed  CrossRef  Google Scholar 

  136. Li H, Durbin R (2009) Fast and accurate short read alignment with burrows–wheeler transform. Bioinformatics 25(14):1754–1760

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  137. Frith MC, Wan R, Horton P (2010) Incorporating sequence quality data into alignment improves DNA read mapping. Nucleic Acids Res 38(7):e100

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  138. Garrison E, Marth G (2012) Haplotype-based variant detection from short-read sequencing. arXiv:1207.3907

    Google Scholar 

  139. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9(1):75

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  140. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL (2008) NCBI BLAST: a better web interface. Nucleic Acids Res 36(suppl_2):W5–W9

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  141. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45(D1):D353–D361

    CAS  PubMed  CrossRef  Google Scholar 

  142. Federhen S (2012) The NCBI taxonomy database. Nucleic Acids Res 40(D1):D136–D143

    CAS  PubMed  CrossRef  Google Scholar 

  143. Jagielski T, Minias A, van Ingen J, Rastogi N, Brzostek A, Zaczek A, Dziadek J (2016) Methodological and clinical aspects of the molecular epidemiology of Mycobacterium tuberculosis and other mycobacteria. Clin Microbiol Rev 29(2):239–290. https://doi.org/10.1128/CMR.00055-15

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  144. Supply P, Allix C, Lesjean S, Cardoso-Oelemann M, Rusch-Gerdes S, Willery E, Savine E, de Haas P, van Deutekom H, Roring S, Bifani P, Kurepina N, Kreiswirth B, Sola C, Rastogi N, Vatin V, Gutierrez MC, Fauville M, Niemann S, Skuce R, Kremer K, Locht C, van Soolingen D (2006) Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis. J Clin Microbiol 44(12):4498–4510. https://doi.org/10.1128/JCM.01392-06

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  145. Couvin D, Zozio T, Rastogi N (2017) SpolSimilaritySearch - a web tool to compare and search similarities between spoligotypes of Mycobacterium tuberculosis complex. Tuberculosis 105:49–52. https://doi.org/10.1016/j.tube.2017.04.007

    CAS  CrossRef  PubMed  Google Scholar 

  146. Mokrousov I, Rastogi N (2015) Spacer-based macroarrays for CRISPR genotyping. In: Lundgren M, Charpentier E, Fineran PC (eds) CRISPR: methods and protocols. Springer New York, New York, NY, pp 111–131. https://doi.org/10.1007/978-1-4939-2687-9_7

    CrossRef  Google Scholar 

  147. Couvin D, David A, Zozio T, Rastogi N (2019) Macro-geographical specificities of the prevailing tuberculosis epidemic as seen through SITVIT2, an updated version of the Mycobacterium tuberculosis genotyping database. Infect Genet Evol 72:31–43. https://doi.org/10.1016/j.meegid.2018.12.030

    CAS  CrossRef  PubMed  Google Scholar 

  148. Xia E, Teo YY, Ong RT (2016) SpoTyping: fast and accurate in silico Mycobacterium spoligotyping from sequence reads. Genome Med 8(1):19. https://doi.org/10.1186/s13073-016-0270-7

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  149. Sekyere JO, Asante J (2018) Emerging mechanisms of antimicrobial resistance in bacteria and fungi: advances in the era of genomics. Future Microbiol 13:241–262. https://doi.org/10.2217/fmb-2017-0172

    CAS  CrossRef  PubMed  Google Scholar 

  150. Ferri M, Ranucci E, Romagnoli P, Giaccone V (2017) Antimicrobial resistance: a global emerging threat to public health systems. Crit Rev Food Sci Nutr 57(13):2857–2876. https://doi.org/10.1080/10408398.2015.1077192

    CAS  CrossRef  PubMed  Google Scholar 

  151. Nasiri MJ, Haeili M, Ghazi M, Goudarzi H, Pormohammad A, Imani Fooladi AA, Feizabadi MM (2017) New insights in to the intrinsic and acquired drug resistance mechanisms in mycobacteria. Front Microbiol 8:681. https://doi.org/10.3389/fmicb.2017.00681

    CrossRef  PubMed  PubMed Central  Google Scholar 

  152. Smith SE, Showers-Corneli P, Dardenne CN, Harpending HH, Martin DP, Beiko RG (2012) Comparative genomic and phylogenetic approaches to characterize the role of genetic recombination in mycobacterial evolution. PLoS One 7(11):e50070. https://doi.org/10.1371/journal.pone.0050070

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  153. Adams KN, Takaki K, Connolly LE, Wiedenhoft H, Winglee K, Humbert O, Edelstein PH, Cosma CL, Ramakrishnan L (2011) Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism. Cell 145(1):39–53. https://doi.org/10.1016/j.cell.2011.02.022

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  154. Louw GE, Warren RM, Gey van Pittius NC, McEvoy CR, Van Helden PD, Victor TC (2009) A balancing act: efflux/influx in mycobacterial drug resistance. Antimicrob Agents Chemother 53(8):3181–3189. https://doi.org/10.1128/AAC.01577-08

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  155. Stephan J, Mailaender C, Etienne G, Daffe M, Niederweis M (2004) Multidrug resistance of a porin deletion mutant of Mycobacterium smegmatis. Antimicrob Agents Chemother 48(11):4163–4170. https://doi.org/10.1128/AAC.48.11.4163-4170.2004

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  156. Vianna JS, Machado D, Ramis IB, Silva FP, Bierhals DV, Abril MA, von Groll A, Ramos DF, Lourenco MCS, Viveiros M, da Silva PEA (2019) The contribution of efflux pumps in Mycobacterium abscessus complex resistance to clarithromycin. Antibiotics (Basel) 8(3):153. https://doi.org/10.3390/antibiotics8030153

    CAS  CrossRef  Google Scholar 

  157. Kapur V, Li LL, Iordanescu S, Hamrick MR, Wanger A, Kreiswirth BN, Musser JM (1994) Characterization by automated DNA sequencing of mutations in the gene (rpoB) encoding the RNA polymerase beta subunit in rifampin-resistant Mycobacterium tuberculosis strains from new York City and Texas. J Clin Microbiol 32(4):1095

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  158. Miotto P, Tessema B, Tagliani E, Chindelevitch L, Starks AM, Emerson C, Hanna D, Kim PS, Liwski R, Zignol M, Gilpin C, Niemann S, Denkinger CM, Fleming J, Warren RM, Crook D, Posey J, Gagneux S, Hoffner S, Rodrigues C, Comas I, Engelthaler DM, Murray M, Alland D, Rigouts L, Lange C, Dheda K, Hasan R, Ranganathan UDK, McNerney R, Ezewudo M, Cirillo DM, Schito M, Koser CU, Rodwell TC (2017) A standardised method for interpreting the association between mutations and phenotypic drug resistance in Mycobacterium tuberculosis. Eur Respir J 50(6). https://doi.org/10.1183/13993003.01354-2017

  159. The CRyPTIC Consortium and the 100000 Genomes Project, Allix-Beguec C, Arandjelovic I, Bi L, Beckert P, Bonnet M, Bradley P, Cabibbe AM, Cancino-Munoz I, Caulfield MJ, Chaiprasert A, Cirillo DM, Clifton DA, Comas I, Crook DW, De Filippo MR, de Neeling H, Diel R, Drobniewski FA, Faksri K, Farhat MR, Fleming J, Fowler P, Fowler TA, Gao Q, Gardy J, Gascoyne-Binzi D, Gibertoni-Cruz AL, Gil-Brusola A, Golubchik T, Gonzalo X, Grandjean L, He G, Guthrie JL, Hoosdally S, Hunt M, Iqbal Z, Ismail N, Johnston J, Khanzada FM, Khor CC, Kohl TA, Kong C, Lipworth S, Liu Q, Maphalala G, Martinez E, Mathys V, Merker M, Miotto P, Mistry N, DAJ M, Murray M, Niemann S, Omar SV, Ong RT, TEA P, Posey JE, Prammananan T, Pym A, Rodrigues C, Rodrigues M, Rodwell T, Rossolini GM, Sanchez Padilla E, Schito M, Shen X, Shendure J, Sintchenko V, Sloutsky A, Smith EG, Snyder M, Soetaert K, Starks AM, Supply P, Suriyapol P, Tahseen S, Tang P, Teo YY, TNT T, Thwaites G, Tortoli E, van Soolingen D, Walker AS, Walker TM, Wilcox M, Wilson DJ, Wyllie D, Yang Y, Zhang H, Zhao Y, Zhu B (2018) Prediction of susceptibility to first-line tuberculosis drugs by DNA sequencing. N Engl J Med 379(15):1403–1415. https://doi.org/10.1056/NEJMoa1800474

    CrossRef  Google Scholar 

  160. Chakravorty S, Kothari H, Aladegbami B, Cho EJ, Lee JS, Roh SS, Kim H, Kwak H, Lee EG, Hwang SH, Banada PP, Safi H, Via LE, Cho SN, Barry CE 3rd, Alland D (2012) Rapid, high-throughput detection of rifampin resistance and heteroresistance in Mycobacterium tuberculosis by use of sloppy molecular beacon melting temperature coding. J Clin Microbiol 50(7):2194–2202. https://doi.org/10.1128/JCM.00143-12

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  161. Ng KC, Meehan CJ, Torrea G, Goeminne L, Diels M, Rigouts L, de Jong BC, Andre E (2018) Potential application of digitally linked tuberculosis diagnostics for real-time surveillance of drug-resistant tuberculosis transmission: validation and analysis of test results. JMIR Med Inform 6(1):e12. https://doi.org/10.2196/medinform.9309

    CrossRef  PubMed  PubMed Central  Google Scholar 

  162. Ng KCS, van Deun A, Meehan CJ, Torrea G, Driesen M, Gabriels S, Rigouts L, Andre E, de Jong BC (2018) Xpert ultra can unambiguously identify specific rifampin resistance-conferring mutations. J Clin Microbiol 56(9):e00686–e00618. https://doi.org/10.1128/JCM.00686-18

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  163. Piddock LJ, Williams KJ, Ricci V (2000) Accumulation of rifampicin by Mycobacterium aurum, Mycobacterium smegmatis and Mycobacterium tuberculosis. J Antimicrob Chemother 45(2):159–165. https://doi.org/10.1093/jac/45.2.159

    CAS  CrossRef  PubMed  Google Scholar 

  164. Li XZ, Zhang L, Nikaido H (2004) Efflux pump-mediated intrinsic drug resistance in Mycobacterium smegmatis. Antimicrob Agents Chemother 48(7):2415–2423. https://doi.org/10.1128/AAC.48.7.2415-2423.2004

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  165. Andre E, Goeminne L, Cabibbe A, Beckert P, Kabamba Mukadi B, Mathys V, Gagneux S, Niemann S, Van Ingen J, Cambau E (2017) Consensus numbering system for the rifampicin resistance-associated rpoB gene mutations in pathogenic mycobacteria. Clin Microbiol Infect 23(3):167–172. https://doi.org/10.1016/j.cmi.2016.09.006

    CAS  CrossRef  PubMed  Google Scholar 

  166. Meehan CJ, Goig GA, Kohl TA, Verboven L, Dippenaar A, Ezewudo M, Farhat MR, Guthrie JL, Laukens K, Miotto P, Ofori-Anyinam B, Dreyer V, Supply P, Suresh A, Utpatel C, van Soolingen D, Zhou Y, Ashton PM, Brites D, Cabibbe AM, de Jong BC, de Vos M, Menardo F, Gagneux S, Gao Q, Heupink TH, Liu Q, Loiseau C, Rigouts L, Rodwell TC, Tagliani E, Walker TM, Warren RM, Zhao Y, Zignol M, Schito M, Gardy J, Cirillo DM, Niemann S, Comas I, Van Rie A (2019) Whole genome sequencing of Mycobacterium tuberculosis: current standards and open issues. Nat Rev Microbiol 17(9):533–545. https://doi.org/10.1038/s41579-019-0214-5

    CAS  CrossRef  PubMed  Google Scholar 

  167. Satta G, Lipman M, Smith GP, Arnold C, Kon OM, McHugh TD (2018) Mycobacterium tuberculosis and whole-genome sequencing: how close are we to unleashing its full potential? Clin Microbiol Infect 24(6):604–609. https://doi.org/10.1016/j.cmi.2017.10.030

    CAS  CrossRef  PubMed  Google Scholar 

  168. Ezewudo M, Borens A, Chiner-Oms A, Miotto P, Chindelevitch L, Starks AM, Hanna D, Liwski R, Zignol M, Gilpin C, Niemann S, Kohl TA, Warren RM, Crook D, Gagneux S, Hoffner S, Rodrigues C, Comas I, Engelthaler DM, Alland D, Rigouts L, Lange C, Dheda K, Hasan R, McNerney R, Cirillo DM, Schito M, Rodwell TC, Posey J (2018) Integrating standardized whole genome sequence analysis with a global Mycobacterium tuberculosis antibiotic resistance knowledgebase. Sci Rep 8(1):15382. https://doi.org/10.1038/s41598-018-33731-1

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  169. Kohl TA, Utpatel C, Schleusener V, De Filippo MR, Beckert P, Cirillo DM, Niemann S (2018) MTBseq: a comprehensive pipeline for whole genome sequence analysis of Mycobacterium tuberculosis complex isolates. PeerJ 6:e5895. https://doi.org/10.7717/peerj.5895

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  170. Ngo TM, Teo YY (2019) Genomic prediction of tuberculosis drug-resistance: benchmarking existing databases and prediction algorithms. BMC Bioinformatics 20(1):68. https://doi.org/10.1186/s12859-019-2658-z

    CrossRef  PubMed  PubMed Central  Google Scholar 

  171. Schleusener V, Koser CU, Beckert P, Niemann S, Feuerriegel S (2017) Mycobacterium tuberculosis resistance prediction and lineage classification from genome sequencing: comparison of automated analysis tools. Sci Rep 7:46327. https://doi.org/10.1038/srep46327

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  172. Hunt M, Bradley P, Lapierre SG, Heys S, Thomsit M, Hall MB, Malone KM, Wintringer P, Walker TM, Cirillo DM, Comas I, Farhat MR, Fowler P, Gardy J, Ismail N, Kohl TA, Mathys V, Merker M, Niemann S, Omar SV, Sintchenko V, Smith G, van Soolingen D, Supply P, Tahseen S, Wilcox M, Arandjelovic I, Peto TEA, Crook DW, Iqbal Z (2019) Antibiotic resistance prediction for Mycobacterium tuberculosis from genome sequence data with Mykrobe. Wellcome Open Res 4:191. https://doi.org/10.12688/wellcomeopenres.15603.1

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  173. Phelan JE, O'Sullivan DM, Machado D, Ramos J, Oppong YEA, Campino S, O'Grady J, McNerney R, Hibberd ML, Viveiros M, Huggett JF, Clark TG (2019) Integrating informatics tools and portable sequencing technology for rapid detection of resistance to anti-tuberculous drugs. Genome Med 11(1):41. https://doi.org/10.1186/s13073-019-0650-x

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  174. Feuerriegel S, Schleusener V, Beckert P, Kohl TA, Miotto P, Cirillo DM, Cabibbe AM, Niemann S, Fellenberg K (2015) PhyResSE: a web tool delineating Mycobacterium tuberculosis antibiotic resistance and lineage from whole-genome sequencing data. J Clin Microbiol 53(6):1908–1914. https://doi.org/10.1128/JCM.00025-15

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  175. Macedo R, Nunes A, Portugal I, Duarte S, Vieira L, Gomes JP (2018) Dissecting whole-genome sequencing-based online tools for predicting resistance in Mycobacterium tuberculosis: can we use them for clinical decision guidance? Tuberculosis 110:44–51. https://doi.org/10.1016/j.tube.2018.03.009

    CAS  CrossRef  PubMed  Google Scholar 

  176. Lipworth S, Hough N, Leach L, Morgan M, Jeffery K, Andersson M, Robinson E, Smith EG, Crook D, Peto T, Walker T (2019) Whole-genome sequencing for predicting clarithromycin resistance in Mycobacterium abscessus. Antimicrob Agents Chemother 63(1):e01204–e01218. https://doi.org/10.1128/AAC.01204-18

    CAS  CrossRef  PubMed  Google Scholar 

  177. Gupta SK, Drancourt M, Rolain JM (2017) In Silico prediction of antibiotic resistance in Mycobacterium ulcerans Agy99 through whole genome sequence analysis. Am J Trop Med Hyg 97(3):810–814. https://doi.org/10.4269/ajtmh.16-0478

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  178. Lavania M, Singh I, Turankar RP, Gupta AK, Ahuja M, Pathak V, Sengupta U (2018) Enriched whole genome sequencing identified compensatory mutations in the RNA polymerase gene of rifampicin-resistant Mycobacterium leprae strains. Infect Drug Resist 11:169–175. https://doi.org/10.2147/IDR.S152082

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  179. Benjak A, Avanzi C, Singh P, Loiseau C, Girma S, Busso P, Fontes ANB, Miyamoto Y, Namisato M, Bobosha K, Salgado CG, da Silva MB, Bouth RC, Frade MAC, Filho FB, Barreto JG, Nery JAC, Buhrer-Sekula S, Lupien A, Al-Samie AR, Al-Qubati Y, Alkubati AS, Bretzel G, Vera-Cabrera L, Sakho F, Johnson CR, Kodio M, Fomba A, Sow SO, Gado M, Konate O, Stefani MMA, Penna GO, Suffys PN, Sarno EN, Moraes MO, Rosa PS, Baptista I, Spencer JS, Aseffa A, Matsuoka M, Kai M, Cole ST (2018) Phylogenomics and antimicrobial resistance of the leprosy bacillus Mycobacterium leprae. Nat Commun 9(1):352. https://doi.org/10.1038/s41467-017-02576-z

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  180. Starks AM, Aviles E, Cirillo DM, Denkinger CM, Dolinger DL, Emerson C, Gallarda J, Hanna D, Kim PS, Liwski R, Miotto P, Schito M, Zignol M (2015) Collaborative effort for a centralized worldwide tuberculosis relational sequencing data platform. Clin Infect Dis 61(Suppl 3):S141–S146. https://doi.org/10.1093/cid/civ610

    CrossRef  PubMed Central  Google Scholar 

  181. Schito M, Dolinger DL (2015) A collaborative approach for "ReSeq-ing" Mycobacterium tuberculosis drug resistance: convergence for drug and diagnostic developers. EBioMedicine 2(10):1262–1265. https://doi.org/10.1016/j.ebiom.2015.10.008

    CrossRef  PubMed  PubMed Central  Google Scholar 

  182. Zignol M, Cabibbe AM, Dean AS, Glaziou P, Alikhanova N, Ama C, Andres S, Barbova A, Borbe-Reyes A, Chin DP, Cirillo DM, Colvin C, Dadu A, Dreyer A, Driesen M, Gilpin C, Hasan R, Hasan Z, Hoffner S, Hussain A, Ismail N, Kamal SMM, Khanzada FM, Kimerling M, Kohl TA, Mansjö M, Miotto P, Mukadi YD, Mvusi L, Niemann S, Omar SV, Rigouts L, Schito M, Sela I, Seyfaddinova M, Skenders G, Skrahina A, Tahseen S, Wells WA, Zhurilo A, Weyer K, Floyd K, Raviglione MC (2018) Genetic sequencing for surveillance of drug resistance in tuberculosis in highly endemic countries: a multi-country population-based surveillance study. Lancet Infect Dis 18(6):675–683. https://doi.org/10.1016/s1473-3099(18)30073-2

    CrossRef  PubMed  PubMed Central  Google Scholar 

  183. Comas I (2017) Genomic epidemiology of tuberculosis. In: Gagneux S (ed) Strain variation in the Mycobacterium tuberculosis complex: its role in biology, Epidemiology and Control. Springer International Publishing, Cham, pp 79–93. https://doi.org/10.1007/978-3-319-64371-7_4

    CrossRef  Google Scholar 

  184. Gori A, Bandera A, Marchetti G, Degli Esposti A, Catozzi L, Nardi GP, Gazzola L, Ferrario G, van Embden JD, van Soolingen D, Moroni M, Franzetti F (2005) Spoligotyping and Mycobacterium tuberculosis. Emerg Infect Dis 11(8):1242–1248. https://doi.org/10.3201/eid1108.040982

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  185. Jonsson J, Hoffner S, Berggren I, Bruchfeld J, Ghebremichael S, Pennhag A, Groenheit R (2014) Comparison between RFLP and MIRU-VNTR genotyping of Mycobacterium tuberculosis strains isolated in Stockholm 2009 to 2011. PLoS One 9(4):e95159. https://doi.org/10.1371/journal.pone.0095159

    CrossRef  PubMed  PubMed Central  Google Scholar 

  186. Meehan CJ, Moris P, Kohl TA, Pecerska J, Akter S, Merker M, Utpatel C, Beckert P, Gehre F, Lempens P, Stadler T, Kaswa MK, Kuhnert D, Niemann S, de Jong BC (2018) The relationship between transmission time and clustering methods in Mycobacterium tuberculosis epidemiology. EBioMedicine 37:410–416. https://doi.org/10.1016/j.ebiom.2018.10.013

    CrossRef  PubMed  PubMed Central  Google Scholar 

  187. Wyllie DH, Davidson JA, Grace Smith E, Rathod P, Crook DW, Peto TEA, Robinson E, Walker T, Campbell C (2018) A quantitative evaluation of MIRU-VNTR typing against whole-genome sequencing for identifying Mycobacterium tuberculosis transmission: a prospective observational cohort study. EBioMedicine 34:122–130. https://doi.org/10.1016/j.ebiom.2018.07.019

    CrossRef  PubMed  PubMed Central  Google Scholar 

  188. Jajou R, de Neeling A, van Hunen R, de Vries G, Schimmel H, Mulder A, Anthony R, van der Hoek W, van Soolingen D (2018) Epidemiological links between tuberculosis cases identified twice as efficiently by whole genome sequencing than conventional molecular typing: a population-based study. PLoS One 13(4):e0195413. https://doi.org/10.1371/journal.pone.0195413

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  189. Alaridah N, Hallback ET, Tangrot J, Winqvist N, Sturegard E, Floren-Johansson K, Jonsson B, Tenland E, Welinder-Olsson C, Medstrand P, Kaijser B, Godaly G (2019) Transmission dynamics study of tuberculosis isolates with whole genome sequencing in southern Sweden. Sci Rep 9(1):4931. https://doi.org/10.1038/s41598-019-39971-z

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  190. Guthrie JL, Strudwick L, Roberts B, Allen M, McFadzen J, Roth D, Jorgensen D, Rodrigues M, Tang P, Hanley B, Johnston J, Cook VJ, Gardy JL (2019) Whole genome sequencing for improved understanding of Mycobacterium tuberculosis transmission in a remote circumpolar region. Epidemiol Infect 147:e188. https://doi.org/10.1017/S0950268819000670

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  191. Gardy JL, Johnston JC, Ho Sui SJ, Cook VJ, Shah L, Brodkin E, Rempel S, Moore R, Zhao Y, Holt R, Varhol R, Birol I, Lem M, Sharma MK, Elwood K, Jones SJ, Brinkman FS, Brunham RC, Tang P (2011) Whole-genome sequencing and social-network analysis of a tuberculosis outbreak. N Engl J Med 364(8):730–739. https://doi.org/10.1056/NEJMoa1003176

    CAS  CrossRef  PubMed  Google Scholar 

  192. Walker TM, Ip CLC, Harrell RH, Evans JT, Kapatai G, Dedicoat MJ, Eyre DW, Wilson DJ, Hawkey PM, Crook DW, Parkhill J, Harris D, Walker AS, Bowden R, Monk P, Smith EG, Peto TEA (2013) Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect Dis 13(2):137–146. https://doi.org/10.1016/s1473-3099(12)70277-3

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  193. Lee RS, Radomski N, Proulx JF, Levade I, Shapiro BJ, McIntosh F, Soualhine H, Menzies D, Behr MA (2015) Population genomics of Mycobacterium tuberculosis in the Inuit. Proc Natl Acad Sci U S A 112(44):13609–13614. https://doi.org/10.1073/pnas.1507071112

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  194. Glynn JR, Guerra-Assuncao JA, Houben RM, Sichali L, Mzembe T, Mwaungulu LK, Mwaungulu JN, McNerney R, Khan P, Parkhill J, Crampin AC, Clark TG (2015) Whole genome sequencing shows a low proportion of tuberculosis disease is attributable to known close contacts in rural Malawi. PLoS One 10(7):e0132840. https://doi.org/10.1371/journal.pone.0132840

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  195. Hatherell HA, Colijn C, Stagg HR, Jackson C, Winter JR, Abubakar I (2016) Interpreting whole genome sequencing for investigating tuberculosis transmission: a systematic review. BMC Med 14:21. https://doi.org/10.1186/s12916-016-0566-x

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  196. Comas I, Coscolla M, Luo T, Borrell S, Holt KE, Kato-Maeda M, Parkhill J, Malla B, Berg S, Thwaites G, Yeboah-Manu D, Bothamley G, Mei J, Wei L, Bentley S, Harris SR, Niemann S, Diel R, Aseffa A, Gao Q, Young D, Gagneux S (2013) Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet 45(10):1176–1182. https://doi.org/10.1038/ng.2744

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  197. O'Neill MB, Shockey A, Zarley A, Aylward W, Eldholm V, Kitchen A, Pepperell CS (2019) Lineage specific histories of Mycobacterium tuberculosis dispersal in Africa and Eurasia. Mol Ecol 28(13):3241–3256. https://doi.org/10.1111/mec.15120

    CrossRef  PubMed  PubMed Central  Google Scholar 

  198. Zink AR, Sola C, Reischl U, Grabner W, Rastogi N, Wolf H, Nerlich AG (2003) Characterization of Mycobacterium tuberculosis complex DNAs from Egyptian mummies by spoligotyping. J Clin Microbiol 41(1):359–367. https://doi.org/10.1128/jcm.41.1.359-367.2003

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  199. Bos KI, Harkins KM, Herbig A, Coscolla M, Weber N, Comas I, Forrest SA, Bryant JM, Harris SR, Schuenemann VJ, Campbell TJ, Majander K, Wilbur AK, Guichon RA, Wolfe Steadman DL, Cook DC, Niemann S, Behr MA, Zumarraga M, Bastida R, Huson D, Nieselt K, Young D, Parkhill J, Buikstra JE, Gagneux S, Stone AC, Krause J (2014) Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature 514(7523):494–497. https://doi.org/10.1038/nature13591

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  200. Crispell J, Zadoks RN, Harris SR, Paterson B, Collins DM, de-Lisle GW, Livingstone P, Neill MA, Biek R, Lycett SJ, Kao RR, Price-Carter M (2017) Using whole genome sequencing to investigate transmission in a multi-host system: bovine tuberculosis in New Zealand. BMC Genomics 18(1):180. https://doi.org/10.1186/s12864-017-3569-x

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  201. Crispell J, Benton CH, Balaz D, De Maio N, Ahkmetova A, Allen A, Biek R, Presho EL, Dale J, Hewinson G, Lycett SJ, Nunez-Garcia J, Skuce RA, Trewby H, Wilson DJ, Zadoks RN, Delahay RJ, Kao RR (2019) Combining genomics and epidemiology to analyse bi-directional transmission of Mycobacterium bovis in a multi-host system. elife 8. https://doi.org/10.7554/eLife.45833

  202. Merker M, Barbier M, Cox H, Rasigade JP, Feuerriegel S, Kohl TA, Diel R, Borrell S, Gagneux S, Nikolayevskyy V, Andres S, Nubel U, Supply P, Wirth T, Niemann S (2018) Compensatory evolution drives multidrug-resistant tuberculosis in Central Asia. elife 7. https://doi.org/10.7554/eLife.38200

  203. Merker M, Blin C, Mona S, Duforet-Frebourg N, Lecher S, Willery E, Blum MG, Rusch-Gerdes S, Mokrousov I, Aleksic E, Allix-Beguec C, Antierens A, Augustynowicz-Kopec E, Ballif M, Barletta F, Beck HP, Barry CE 3rd, Bonnet M, Borroni E, Campos-Herrero I, Cirillo D, Cox H, Crowe S, Crudu V, Diel R, Drobniewski F, Fauville-Dufaux M, Gagneux S, Ghebremichael S, Hanekom M, Hoffner S, Jiao WW, Kalon S, Kohl TA, Kontsevaya I, Lillebaek T, Maeda S, Nikolayevskyy V, Rasmussen M, Rastogi N, Samper S, Sanchez-Padilla E, Savic B, Shamputa IC, Shen A, Sng LH, Stakenas P, Toit K, Varaine F, Vukovic D, Wahl C, Warren R, Supply P, Niemann S, Wirth T (2015) Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage. Nat Genet 47(3):242–249. https://doi.org/10.1038/ng.3195

    CAS  CrossRef  PubMed  Google Scholar 

  204. Menardo F, Duchene S, Brites D, Gagneux S (2019) The molecular clock of Mycobacterium tuberculosis. PLoS Pathog 15(9):e1008067. https://doi.org/10.1371/journal.ppat.1008067

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  205. Folkvardsen DB, Norman A, Andersen AB, Michael Rasmussen E, Jelsbak L, Lillebaek T (2017) Genomic epidemiology of a major Mycobacterium tuberculosis outbreak: retrospective cohort study in a low-incidence setting using sparse time-series sampling. J Infect Dis 216(3):366–374. https://doi.org/10.1093/infdis/jix298

    CAS  CrossRef  PubMed  Google Scholar 

  206. Stimson J, Gardy J, Mathema B, Crudu V, Cohen T, Colijn C (2019) Beyond the SNP threshold: identifying outbreak clusters using inferred transmissions. Mol Biol Evol 36(3):587–603. https://doi.org/10.1093/molbev/msy242

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  207. Fawzy A, Zschock M, Ewers C, Eisenberg T (2018) Genotyping methods and molecular epidemiology of Mycobacterium avium subsp. paratuberculosis (MAP). Int J Vet Sci Med 6(2):258–264. https://doi.org/10.1016/j.ijvsm.2018.08.001

    CrossRef  PubMed  PubMed Central  Google Scholar 

  208. Harris KA, Underwood A, Kenna DT, Brooks A, Kavaliunaite E, Kapatai G, Tewolde R, Aurora P, Dixon G (2015) Whole-genome sequencing and epidemiological analysis do not provide evidence for cross-transmission of Mycobacterium abscessus in a cohort of pediatric cystic fibrosis patients. Clin Infect Dis 60(7):1007–1016. https://doi.org/10.1093/cid/ciu967

    CAS  CrossRef  PubMed  Google Scholar 

  209. Doyle RM, Rubio M, Dixon G, Hartley J, Klein N, Coll P, Harris KA (2019) Cross-transmission is not the source of new Mycobacterium abscessus infections in a multi-Centre cohort of cystic fibrosis patients. Clin Infect Dis 70(9):1855–1864. https://doi.org/10.1093/cid/ciz526

    CAS  CrossRef  PubMed Central  Google Scholar 

  210. Nishiuchi Y, Iwamoto T, Maruyama F (2017) Infection sources of a common non-tuberculous mycobacterial pathogen, Mycobacterium avium Complex. Front Med (Lausanne) 4:27. https://doi.org/10.3389/fmed.2017.00027

    CrossRef  Google Scholar 

  211. Kreutzfeldt KM, McAdam PR, Claxton P, Holmes A, Seagar AL, Laurenson IF, Fitzgerald JR (2013) Molecular longitudinal tracking of Mycobacterium abscessus spp. during chronic infection of the human lung. PLoS One 8(5):e63237. https://doi.org/10.1371/journal.pone.0063237

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  212. Schuenemann VJ, Avanzi C, Krause-Kyora B, Seitz A, Herbig A, Inskip S, Bonazzi M, Reiter E, Urban C, Dangvard Pedersen D, Taylor GM, Singh P, Stewart GR, Veleminsky P, Likovsky J, Marcsik A, Molnar E, Palfi G, Mariotti V, Riga A, Belcastro MG, Boldsen JL, Nebel A, Mays S, Donoghue HD, Zakrzewski S, Benjak A, Nieselt K, Cole ST, Krause J (2018) Ancient genomes reveal a high diversity of Mycobacterium leprae in medieval Europe. PLoS Pathog 14(5):e1006997. https://doi.org/10.1371/journal.ppat.1006997

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  213. Mendum TA, Schuenemann VJ, Roffey S, Taylor GM, Wu H, Singh P, Tucker K, Hinds J, Cole ST, Kierzek AM, Nieselt K, Krause J, Stewart GR (2014) Mycobacterium leprae genomes from a British medieval leprosy hospital: towards understanding an ancient epidemic. BMC Genomics 15:270. https://doi.org/10.1186/1471-2164-15-270

    CrossRef  PubMed  PubMed Central  Google Scholar 

  214. Vandelannoote K, Meehan CJ, Eddyani M, Affolabi D, Phanzu DM, Eyangoh S, Jordaens K, Portaels F, Mangas K, Seemann T, Marsollier L, Marion E, Chauty A, Landier J, Fontanet A, Leirs H, Stinear TP, de Jong BC (2017) Multiple introductions and recent spread of the emerging human pathogen Mycobacterium ulcerans across Africa. Genome Biol Evol 9(3):414–426. https://doi.org/10.1093/gbe/evx003

    CrossRef  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco A. Riojas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Riojas, M.A. et al. (2021). Identification and Characterization of Mycobacterial Species Using Whole-Genome Sequences. In: Parish, T., Kumar, A. (eds) Mycobacteria Protocols. Methods in Molecular Biology, vol 2314. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1460-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1460-0_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1459-4

  • Online ISBN: 978-1-0716-1460-0

  • eBook Packages: Springer Protocols