Skip to main content

Single-Particle Cryo-EM of Membrane Proteins

  • Protocol
  • First Online:
Book cover Structure and Function of Membrane Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2302))

Abstract

In the recent years, the protein databank has been fueled by the exponential growth of high-resolution electron cryo-microscopy (cryo-EM) structures. This trend will be further accelerated through the continuous software and method developments and the increasing availability of imaging centers, which will open cryo-EM to a wide array of researchers with their diverse scientific goals and questions. Especially for structural biology of membrane proteins, cryo-EM offers significant advantages as it can overcome multiple limitations of classical methods. Most importantly, in cryo-EM, the sample is prepared as a vitrified suspension, which abolishes the need for crystallization, reduces the required sample amount and allows usage of a wide arsenal of hydrophobic environments. Despite recent improvements, high-resolution cryo-EM still poses some significant challenges, and standardized procedures, especially for the characterization of membrane proteins, are missing. While there can be no ultimate recipe toward a high-resolution cryo-EM structure for every membrane protein, certain factors seem to be universally relevant. Here, we share the protocols that have been successfully used in our laboratory. We hope that this may be a useful resource to other researchers in the field and may increase their chances of success.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liao M, Cao E, Julius D, Cheng Y (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504:107–112. https://doi.org/10.1038/nature12822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Madej MG, Ziegler CM (2018) Dawning of a new era in TRP channel structural biology by cryo-electron microscopy. Pflugers Arch Eur J Physiol 470:213–225

    Article  CAS  Google Scholar 

  3. Liang YL, Khoshouei M, Radjainia M et al (2017) Phase-plate cryo-EM structure of a class B GPCR-G-protein complex. Nature 546:118–123. https://doi.org/10.1038/nature22327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang Y, Sun B, Feng D et al (2017) Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein. Nature 546:248–253. https://doi.org/10.1038/nature22394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. García-Nafría J, Tate CG (2020) Cryo-electron microscopy: moving beyond X-ray crystal structures for drug receptors and drug development. Annu Rev Pharmacol Toxicol 60. https://doi.org/10.1146/annurev-pharmtox-010919-023545

  6. Blees A, Januliene D, Hofmann T et al (2017) Structure of the human MHC-I peptide-loading complex. Nature 551:525–528. https://doi.org/10.1038/nature24627

    Article  CAS  PubMed  Google Scholar 

  7. Vinothkumar KR, Zhu J, Hirst J (2014) Architecture of mammalian respiratory complex I. Nature 515:80–84. https://doi.org/10.1038/nature13686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gu J, Wu M, Guo R et al (2016) The architecture of the mammalian respirasome. Nature 537:639–643. https://doi.org/10.1038/nature19359

    Article  CAS  PubMed  Google Scholar 

  9. Fiedorczuk K, Letts JA, Degliesposti G et al (2016) Atomic structure of the entire mammalian mitochondrial complex i. Nature 538:406–410. https://doi.org/10.1038/nature19794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Agip A-NA, Blaza JN, Fedor JG, Hirst J (2019) Mammalian respiratory complex I through the lens of cryo-EM. Annu Rev Biophys 48:165–184. https://doi.org/10.1146/annurev-biophys-052118-115704

    Article  CAS  PubMed  Google Scholar 

  11. Zhou A, Rohou A, Schep DG et al (2015) Structure and conformational states of the bovine mitochondrial ATP synthase by cryo-EM. elife 4. https://doi.org/10.7554/eLife.10180

  12. Allegretti M, Klusch N, Mills DJ et al (2015) Horizontal membrane-intrinsic α-helices in the stator a-subunit of an F-type ATP synthase. Nature 521:237–240. https://doi.org/10.1038/nature14185

    Article  CAS  PubMed  Google Scholar 

  13. Kühlbrandt W (2019) Structure and mechanisms of F-type ATP synthases. Annu Rev Biochem 88:515–549. https://doi.org/10.1146/annurev-biochem-013118-110903

    Article  CAS  PubMed  Google Scholar 

  14. Murphy BJ, Klusch N, Langer J et al (2019) Rotary substates of mitochondrial ATP synthase reveal the basis of flexible F1-Fo coupling. Science 364:eaaw9128

    Article  CAS  PubMed  Google Scholar 

  15. Lyons JA, Shahsavar A, Paulsen PA et al (2016) Expression strategies for structural studies of eukaryotic membrane proteins. Curr Opin Struct Biol 38:137–144. https://doi.org/10.1016/j.sbi.2016.06.011

    Article  CAS  PubMed  Google Scholar 

  16. Bayburt TH, Grinkova YV, Sligar SG (2002) Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Lett 2:853–856. https://doi.org/10.1021/nl025623k

    Article  CAS  Google Scholar 

  17. Frauenfeld J, Löving R, Armache JP et al (2016) A saposin-lipoprotein nanoparticle system for membrane proteins. Nat Methods 13:345–351. https://doi.org/10.1038/nmeth.3801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Carlson ML, Young JW, Zhao Z et al (2018) The peptidisc, a simple method for stabilizing membrane proteins in detergent-free solution. elife 7. https://doi.org/10.7554/eLife.34085

  19. Tribet C, Audebert R, Popot JL (1996) Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. Proc Natl Acad Sci U S A 93:15047–15050. https://doi.org/10.1073/pnas.93.26.15047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tao H, Lee SCC, Moeller A et al (2013) Engineered nanostructured β-sheet peptides protect membrane proteins. Nat Methods 10:759–761. https://doi.org/10.1038/nmeth.2533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee SC, Knowles TJ, Postis VLG et al (2016) A method for detergent-free isolation of membrane proteins in their local lipid environment. Nat Protoc 11:1149–1162. https://doi.org/10.1038/nprot.2016.070

    Article  CAS  PubMed  Google Scholar 

  22. Scheres SHW (2016) Processing of structurally heterogeneous cryo-EM data in RELION. In: Methods in enzymology. Academic, New York, NY, pp 125–157

    Google Scholar 

  23. Grant T, Rohou A, Grigorieff N (2018) CisTEM, user-friendly software for single-particle image processing. elife 7. https://doi.org/10.7554/eLife.35383

  24. Punjani A, Rubinstein JL, Fleet DJ, Brubaker MA (2017) CryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods 14:290–296. https://doi.org/10.1038/nmeth.4169

    Article  CAS  PubMed  Google Scholar 

  25. Moriya T, Saur M, Stabrin M et al (2017) High-resolution single particle analysis from electron cryo-microscopy images using SPHIRE. J Vis Exp 2017. https://doi.org/10.3791/55448

  26. Bell JM, Chen M, Baldwin PR, Ludtke SJ (2016) High resolution single particle refinement in EMAN2.1. Methods 100:25–34. https://doi.org/10.1016/j.ymeth.2016.02.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Scheres SHW (2012) RELION: implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol 180:519–530. https://doi.org/10.1016/j.jsb.2012.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nakane T, Kimanius D, Lindahl E, Scheres SHW (2018) Characterisation of molecular motions in cryo-EM single-particle data by multi-body refinement in RELION. elife 7. https://doi.org/10.7554/eLife.36861

  29. Hofmann S, Januliene D, Mehdipour AR et al (2019) Conformation space of a heterodimeric ABC exporter under turnover conditions. Nature 571:580–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Henderson R (1995) The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q Rev Biophys 28:171–193. https://doi.org/10.1017/S003358350000305X

    Article  CAS  PubMed  Google Scholar 

  31. Khoshouei M, Radjainia M, Baumeister W, Danev R (2017) Cryo-EM structure of haemoglobin at 3.2 Å determined with the Volta phase plate. Nat Commun 8. https://doi.org/10.1038/ncomms16099

  32. Fan X, Wang J, Zhang X et al (2019) Single particle cryo-EM reconstruction of 52 kDa streptavidin at 3.2 Angstrom resolution. Nat Commun 10. https://doi.org/10.1038/s41467-019-10368-w

  33. Wu S, Avila-Sakar A, Kim J et al (2012) Fabs enable single particle cryoEM studies of small proteins. Structure 20:582–592. https://doi.org/10.1016/j.str.2012.02.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Uchański T, Masiulis S, Fischer B, et al (2021) Megabodies expand the nanobody toolkit for protein structure determination by single-particle cryo-EM. Nat Methods 18:60–68. https://doi.org/10.1038/s41592-020-01001-6

  35. Kim J, Tan YZ, Wicht KJ et al (2019) Structure and drug resistance of the Plasmodium falciparum transporter PfCRT. Nature. https://doi.org/10.1038/s41586-019-1795-x

  36. Merk A, Bartesaghi A, Banerjee S et al (2016) Breaking cryo-EM resolution barriers to facilitate drug discovery. Cell 165:1698–1707. https://doi.org/10.1016/j.cell.2016.05.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bartesaghi A, Aguerrebere C, Falconieri V et al (2018) Atomic resolution cryo-EM structure of β-galactosidase. Structure 26:848–856.e3. https://doi.org/10.1016/j.str.2018.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Danev R, Yanagisawa H, Kikkawa M (2019) Cryo-electron microscopy methodology: current aspects and future directions. Trends Biochem Sci 44:837–848

    Article  CAS  PubMed  Google Scholar 

  39. Zivanov J, Nakane T, Forsberg BO et al (2018) New tools for automated high-resolution cryo-EM structure determination in RELION-3. elife 7. https://doi.org/10.7554/eLife.42166

  40. Tan YZ, Aiyer S, Mietzsch M et al (2018) Sub-2 Å Ewald curvature corrected structure of an AAV2 capsid variant. Nat Commun 9. https://doi.org/10.1038/s41467-018-06076-6

  41. Yip KM, Fischer N, Paknia E et al (2020) Atomic-resolution protein structure determination by cryo-EM. Nature 587:157–161. https://doi.org/10.1038/s41586-020-2833-4

  42. Nakane T, Kotecha A Sente A et al (2020) Single-particle cryo-EM at atomic resolution. Nature 587:152–156. https://doi.org/10.1038/s41586-020-2829-0

  43. Niesen FH, Berglund H, Vedadi M (2007) The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc 2:2212–2221. https://doi.org/10.1038/nprot.2007.321

    Article  CAS  PubMed  Google Scholar 

  44. Mancusso R, Karpowich NK, Czyzewski BK, Wang DN (2011) Simple screening method for improving membrane protein thermostability. Methods 55:324–329. https://doi.org/10.1016/j.ymeth.2011.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chari A, Haselbach D, Kirves JM et al (2015) ProteoPlex: stability optimization of macromolecular complexes by sparse-matrix screening of chemical space. Nat Methods 12:859–865. https://doi.org/10.1038/nmeth.3493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kawate T, Gouaux E (2006) Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14:673–681. https://doi.org/10.1016/j.str.2006.01.013

    Article  CAS  PubMed  Google Scholar 

  47. Wittig I, Braun HP, Schägger H (2006) Blue native PAGE. Nat Protoc 1:418–428. https://doi.org/10.1038/nprot.2006.62

    Article  CAS  PubMed  Google Scholar 

  48. Stetefeld J, McKenna SA, Patel TR (2016) Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys Rev 8:409–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kang Y, Zhou XE, Gao X et al (2015) Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 523:561–567. https://doi.org/10.1038/nature14656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gewering T, Januliene D, Ries AB, Moeller A (2018) Know your detergents: a case study on detergent background in negative stain electron microscopy. J Struct Biol 203:242–246. https://doi.org/10.1016/j.jsb.2018.05.008

    Article  CAS  PubMed  Google Scholar 

  51. Moeller A, Lee SC, Tao H et al (2015) Distinct conformational spectrum of homologous multidrug ABC transporters. Structure 23:450–460. https://doi.org/10.1016/j.str.2014.12.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Russo CJ, Passmore LA (2014) Ultrastable gold substrates for electron cryomicroscopy. Science 346:1377–1380. https://doi.org/10.1126/science.1259530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zi Tan Y, Baldwin PR, Davis JH et al (2017) Addressing preferred specimen orientation in single-particle cryo-EMthrough tilting. Nat Methods 14:793–796. https://doi.org/10.1038/nmeth.4347

    Article  CAS  Google Scholar 

  54. Noble AJ, Wei H, Dandey VP et al (2018) Reducing effects of particle adsorption to the air–water interface in cryo-EM. Nat Methods 15:793–795. https://doi.org/10.1038/s41592-018-0139-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. D’Imprima E, Floris D, Joppe M et al (2019) Protein denaturation at the air-water interface and how to prevent it. elife 8. https://doi.org/10.7554/eLife.42747

  56. Armstrong M, Han B-G, Gomez S et al (2019) Micro-scale fluid behavior during cryo-EM sample blotting. Biophys J. https://doi.org/10.1016/j.bpj.2019.12.017

  57. Razinkov I, Dandey VP, Wei H et al (2016) A new method for vitrifying samples for cryoEM. J Struct Biol 195:190–198. https://doi.org/10.1016/j.jsb.2016.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Arnold SA, Albiez S, Bieri A et al (2017) Blotting-free and lossless cryo-electron microscopy grid preparation from nanoliter-sized protein samples and single-cell extracts. J Struct Biol 197:220–226. https://doi.org/10.1016/j.jsb.2016.11.002

    Article  CAS  PubMed  Google Scholar 

  59. Rubinstein JL, Guo H, Ripstein ZA et al (2019) Shake-it-off: a simple ultrasonic cryo-EM specimen-preparation device. Acta Crystallogr D Struct Biol 75:1063–1070. https://doi.org/10.1107/S2059798319014372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tan YZ, Rubinstein JL (2020) Through-grid wicking enables high-speed cryoEM specimen preparation. Acta Crystallogr Sect D Struct Biol 76:1092–1103. https://doi.org/10.1107/s2059798320012474

  61. Ravelli RBG, Nijpels FJT, Henderikx RJM, et al (2020) Cryo-EM structures from sub-nl volumes using pin-printing and jet vitrification. Nat Commun 11:1–9. https://doi.org/10.1038/s41467-020-16392-5

  62. Kontziampasis D, Klebl DP, Iadanza MG, et al (2019) A cryo-EM grid preparation device for time-resolved structural studies. IUCrJ 6:1024–1031. https://doi.org/10.1107/S2052252519011345

  63. Naydenova K, Peet MJ, Russo CJ (2019) Multifunctional graphene supports for electron cryomicroscopy. Proc Natl Acad Sci U S A 116:11718–11724. https://doi.org/10.1073/pnas.1904766116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Han Y, Fan X, Wang H et al (2019) High-yield monolayer graphene grids for near-atomic resolution cryoelectron microscopy. Proc Natl Acad Sci 2019:201919114. https://doi.org/10.1073/pnas.1919114117

    Article  CAS  Google Scholar 

  65. Liu N, Zhang J, Chen Y, et al (2019) Bioactive Functionalized Monolayer Graphene for High-Resolution Cryo-Electron Microscopy. J Am Chem Soc 141:4016–4025. https://doi.org/10.1021/jacs.8b13038

  66. Cheng Y, Grigorieff N, Penczek PA, Walz T (2015) A primer to single-particle cryo-electron microscopy. Cell 161:438–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Campbell MG, Cheng A, Brilot AF et al (2012) Movies of ice-embedded particles enhance resolution in electron cryo-microscopy. Structure 20:1823–1828. https://doi.org/10.1016/j.str.2012.08.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Huang Z, Baldwin PR, Mullapudi S, Penczek PA (2003) Automated determination of parameters describing power spectra of micrograph images in electron microscopy. J Struct Biol 144:79–94. https://doi.org/10.1016/j.jsb.2003.10.011

    Article  PubMed  Google Scholar 

  69. Rohou A, Grigorieff N (2015) CTFFIND4: fast and accurate defocus estimation from electron micrographs. J Struct Biol 192:216–221. https://doi.org/10.1016/j.jsb.2015.08.008

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zhang K (2016) Gctf: real-time CTF determination and correction. J Struct Biol 193:1–12. https://doi.org/10.1016/j.jsb.2015.11.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Van Heel M (1982) Detection of objects in quantum-noise-limited images. Ultramicroscopy 7:331–341. https://doi.org/10.1016/0304-3991(82)90258-3

    Article  Google Scholar 

  72. Voss NR, Yoshioka CK, Radermacher M et al (2009) DoG Picker and TiltPicker: software tools to facilitate particle selection in single particle electron microscopy. J Struct Biol 166:205–213. https://doi.org/10.1016/j.jsb.2009.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bepler T, Morin A, Rapp M et al (2019) Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat Methods 16:1153–1160. https://doi.org/10.1038/s41592-019-0575-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wagner T, Merino F, Stabrin M et al (2019) SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun Biol 2. https://doi.org/10.1038/s42003-019-0437-z

  75. Tegunov D, Cramer P (2019) Real-time cryo-electron microscopy data preprocessing with Warp. Nat Methods 16:1146–1152. https://doi.org/10.1038/s41592-019-0580-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lander GC, Stagg SM, Voss NR et al (2009) Appion: an integrated, database-driven pipeline to facilitate EM image processing. J Struct Biol 166:95–102. https://doi.org/10.1016/j.jsb.2009.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Li X, Zheng S, Agard DA, Cheng Y (2015) Asynchronous data acquisition and on-the-fly analysis of dose fractionated cryoEM images by UCSFImage. J Struct Biol 192:174–178. https://doi.org/10.1016/j.jsb.2015.09.003

    Article  PubMed  PubMed Central  Google Scholar 

  78. Fernandez-Leiro R, Scheres SHW (2017) A pipeline approach to single-particle processing in RELION. Acta Crystallogr Sect D Struct Biol 2017:496–502

    Article  Google Scholar 

  79. Gómez-Blanco J, de la Rosa-Trevín JM, Marabini R et al (2018) Using Scipion for stream image processing at Cryo-EM facilities. J Struct Biol 204:457–463. https://doi.org/10.1016/j.jsb.2018.10.001

    Article  PubMed  PubMed Central  Google Scholar 

  80. de la Rosa-Trevín JM, Otón J, Marabini R et al (2013) Xmipp 3.0: an improved software suite for image processing in electron microscopy. J Struct Biol 184:321–328. https://doi.org/10.1016/j.jsb.2013.09.015

    Article  PubMed  Google Scholar 

  81. Reboul CF, Kiesewetter S, Eager M et al (2018) Rapid near-atomic resolution single-particle 3D reconstruction with SIMPLE. J Struct Biol 204:172–181. https://doi.org/10.1016/j.jsb.2018.08.005

    Article  CAS  PubMed  Google Scholar 

  82. Van Heel M, Harauz G, Orlova EV et al (1996) A new generation of the IMAGIC image processing system. J Struct Biol 116:17–24. https://doi.org/10.1006/jsbi.1996.0004

    Article  PubMed  Google Scholar 

  83. Grigorieff N (2007) FREALIGN: high-resolution refinement of single particle structures. J Struct Biol 157:117–125. https://doi.org/10.1016/j.jsb.2006.05.004

    Article  CAS  PubMed  Google Scholar 

  84. Hohn M, Tang G, Goodyear G et al (2007) SPARX, a new environment for Cryo-EM image processing. J Struct Biol 157:47–55. https://doi.org/10.1016/j.jsb.2006.07.003

    Article  CAS  PubMed  Google Scholar 

  85. Baxter WT, Leith AD, Frank J (2007) SPIRE: the SPIDER reconstruction engine. J Struct Biol 157:56–63. https://doi.org/10.1016/j.jsb.2006.07.019

    Article  CAS  PubMed  Google Scholar 

  86. Heymann JB, Belnap DM (2007) Bsoft: Image processing and molecular modeling for electron microscopy. J Struct Biol 157:3–18. https://doi.org/10.1016/j.jsb.2006.06.006

    Article  CAS  PubMed  Google Scholar 

  87. Timcenko M, Lyons JA, Januliene D et al (2019) Structure and autoregulation of a P4-ATPase lipid flippase. Nature. https://doi.org/10.1038/s41586-019-1344-7

  88. Booth DS, Avila-Sakar A, Cheng Y (2011) Visualizing proteins and macromolecular complexes by negative stain EM: from grid preparation to image acquisition. J Vis Exp. https://doi.org/10.3791/3227

  89. Ohi M, Li Y, Cheng Y, Walz T (2004) Negative staining and image classification – powerful tools in modern electron microscopy. Biol Proced Online 6:23–34. https://doi.org/10.1251/bpo70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Briggs JAG, Huiskonen JT, Fernando KV et al (2005) Classification and three-dimensional reconstruction of unevenly distributed or symmetry mismatched features of icosahedral particles. J Struct Biol 150:332–339. https://doi.org/10.1016/j.jsb.2005.03.009

    Article  PubMed  Google Scholar 

  91. Serna M (2019) Hands on methods for high resolution cryo-electron microscopy structures of heterogeneous macromolecular complexes. Front Mol Biosci 6. https://doi.org/10.3389/fmolb.2019.00033

  92. Kastner B, Fischer N, Golas MM et al (2008) GraFix: sample preparation for single-particle electron cryomicroscopy. Nat Methods 5:53–55. https://doi.org/10.1038/nmeth1139

    Article  CAS  PubMed  Google Scholar 

  93. Stark H (2010) GraFix: Stabilization of fragile macromolecular complexes for single particle Cryo-EM. Methods in Enzymology. Academic Press Inc., In, pp 109–126

    Google Scholar 

  94. Suloway C, Pulokas J, Fellmann D et al (2005) Automated molecular microscopy: the new Leginon system. J Struct Biol 151:41–60. https://doi.org/10.1016/j.jsb.2005.03.010

    Article  CAS  PubMed  Google Scholar 

  95. Zheng SQ, Palovcak E, Armache JP et al (2017) MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods 14:331–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zivanov J, Nakane T, Scheres SHW (2019) A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis. IUCrJ 6:5–17. https://doi.org/10.1107/S205225251801463X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Pettersen EF, Goddard TD, Huang CC, et al (2004) UCSF Chimera – A visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084

  98. Punjani A, Zhang H, Fleet DJ (2020) Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat Methods 17:1214–1221. https://doi.org/10.1038/s41592-020-00990-8

Download references

Acknowledgments

We are grateful for funding through the DFG Mo2752/2, the Cluster of Excellence Frankfurt EXC 115, as well as support from the Max Planck Society. We would like to thank Deryck Mills and Prof. Werner Kühlbrandt for their support and access to the outstanding cryo-EM facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Moeller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Januliene, D., Moeller, A. (2021). Single-Particle Cryo-EM of Membrane Proteins. In: Schmidt-Krey, I., Gumbart, J.C. (eds) Structure and Function of Membrane Proteins. Methods in Molecular Biology, vol 2302. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1394-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1394-8_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1393-1

  • Online ISBN: 978-1-0716-1394-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics