Skip to main content

Coarse-Grained Molecular Dynamics Simulations of Membrane Proteins: A Practical Guide

  • Protocol
  • First Online:
Book cover Structure and Function of Membrane Proteins

Abstract

Current computer architectures, coupled with state-of-the-art molecular dynamics simulation software, facilitate the in-depth study of large biomolecular systems at high levels of detail. However, biological phenomena take place at various time and length scales and as a result a multiscale approach must be adopted. One such approach is coarse-graining, where biochemical accuracy is sacrificed for computational efficiency. Here, we present a practical guide to setting up and carrying out coarse-grained molecular dynamics simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shaw DE, Maragakis P, Lindorff-Larsen K et al (2010) Atomic-level characterization of the structural dynamics of proteins. Science 330:341–346. https://doi.org/10.1126/SCIENCE.1187409

    Article  CAS  PubMed  Google Scholar 

  2. Marrink SJ, Risselada HJ, Yefimov S et al (2007) The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111:7812–7824. https://doi.org/10.1021/jp071097f

    Article  CAS  PubMed  Google Scholar 

  3. Monticelli L, Kandasamy SK, Periole X et al (2008) The MARTINI coarse-grained force field: extension to proteins. J Chem Theory Comput 4:819–834. https://doi.org/10.1021/ct700324x

    Article  CAS  PubMed  Google Scholar 

  4. de Jong DH, Singh G, Bennett WFD et al (2013) Improved parameters for the Martini coarse-grained protein force field. J Chem Theory Comput 9:687–697. https://doi.org/10.1021/ct300646g

    Article  CAS  PubMed  Google Scholar 

  5. Marrink SJ, de Vries AH, Alan EM (2003) Coarse grained model for semiquantitative lipid simulations. https://doi.org/10.1021/JP036508G

  6. Arnarez C, Uusitalo JJ, Masman MF et al (2015) Dry Martini, a coarse-grained force field for lipid membrane simulations with implicit solvent. J Chem Theory Comput 11:260–275. https://doi.org/10.1021/ct500477k

    Article  CAS  PubMed  Google Scholar 

  7. Uusitalo JJ, Ingólfsson HI, Akhshi P et al (2015) Martini coarse-grained force field: extension to DNA. J Chem Theory Comput 11:3932–3945. https://doi.org/10.1021/acs.jctc.5b00286

    Article  CAS  PubMed  Google Scholar 

  8. Uusitalo JJ, Ingólfsson HI, Marrink SJ, Faustino I (2017) Martini coarse-grained force field: extension to RNA. Biophys J 113:246–256. https://doi.org/10.1016/J.BPJ.2017.05.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Machado MR, Barrera EE, Klein F et al (2019) The SIRAH 2.0 force field: altius, fortius, citius. J Chem Theory Comput 15:2719–2733. https://doi.org/10.1021/acs.jctc.9b00006

    Article  CAS  PubMed  Google Scholar 

  10. Barrera EE, Machado MR, Pantano S (2019) Fat SIRAH: coarse-grained phospholipids to explore membrane–protein dynamics. J Chem Theory Comput 15:5674–5688. https://doi.org/10.1021/acs.jctc.9b00435

    Article  CAS  PubMed  Google Scholar 

  11. Orsi M, Essex JW (2011) The ELBA force field for coarse-grain modeling of lipid membranes. PLoS One 6:e28637. https://doi.org/10.1371/journal.pone.0028637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56. https://doi.org/10.1016/0010-4655(95)00042-E

    Article  CAS  Google Scholar 

  13. Abraham MJ, Murtola T, Schulz R et al (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25. https://doi.org/10.1016/j.softx.2015.06.001

    Article  Google Scholar 

  14. Van Der Spoel D, Lindahl E, Hess B et al (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718. https://doi.org/10.1002/jcc.20291

    Article  CAS  Google Scholar 

  15. Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7:306–317. https://doi.org/10.1007/s008940100045

    Article  CAS  Google Scholar 

  16. Pronk S, Páll S, Schulz R et al (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29:845–854. https://doi.org/10.1093/bioinformatics/btt055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447. https://doi.org/10.1021/ct700301q

    Article  CAS  PubMed  Google Scholar 

  18. Fiser A, Šali A (2003) Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol 374:461–491. https://doi.org/10.1016/S0076-6879(03)74020-8

    Article  CAS  PubMed  Google Scholar 

  19. Waterhouse A, Bertoni M, Bienert S et al (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46:W296–W303. https://doi.org/10.1093/nar/gky427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shen M-Y, Sali A (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci 15:2507–2524. https://doi.org/10.1110/ps.062416606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Benkert P, Tosatto SCE, Schomburg D (2008) QMEAN: a comprehensive scoring function for model quality assessment. Proteins 71:261–277. https://doi.org/10.1002/prot.21715

    Article  CAS  PubMed  Google Scholar 

  22. Cornell WD, Cieplak P, Bayly CI et al (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197. https://doi.org/10.1021/ja00124a002

    Article  CAS  Google Scholar 

  23. Maier JA, Martinez C, Kasavajhala K et al (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11. https://doi.org/10.1021/acs.jctc.5b00255

  24. Phillips JC, Braun R, Wang W et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802. https://doi.org/10.1002/jcc.20289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19. https://doi.org/10.1006/JCPH.1995.1039

    Article  CAS  Google Scholar 

  26. Periole X, Cavalli M, Marrink S-J, Ceruso MA (2009) Combining an elastic network with a coarse-grained molecular force field: structure, dynamics, and intermolecular recognition. J Chem Theory Comput 5:2531–2543. https://doi.org/10.1021/ct9002114

    Article  CAS  PubMed  Google Scholar 

  27. Qi Y, Ingólfsson HI, Cheng X et al (2015) CHARMM-GUI Martini maker for coarse-grained simulations with the Martini force field. J Chem Theory Comput. https://doi.org/10.1021/acs.jctc.5b00513

  28. Hsu P-C, Bruininks BMH, Jefferies D et al (2017) CHARMM-GUI Martini maker for modeling and simulation of complex bacterial membranes with lipopolysaccharides. J Comput Chem 38:2354–2363. https://doi.org/10.1002/jcc.24895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wassenaar TA, Ingólfsson HI, Böckmann RA et al (2015) Computational lipidomics with insane: a versatile tool for generating custom membranes for molecular simulations. J Chem Theory Comput 11:2144–2155. https://doi.org/10.1021/acs.jctc.5b00209

    Article  CAS  PubMed  Google Scholar 

  30. Glass WG, Duncan AL, Biggin PC (2020) Computational investigation of voltage-gated sodium channel β3 subunit dynamics. Front Mol Biosci 7:40. https://doi.org/10.3389/fmolb.2020.00040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Duncan AL, Reddy T, Koldsø H et al (2017) Protein crowding and lipid complexity influence the nanoscale dynamic organization of ion channels in cell membranes. Sci Rep 7:16647. https://doi.org/10.1038/s41598-017-16865-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chavent M, Duncan AL, Rassam P et al (2018) How nanoscale protein interactions determine the mesoscale dynamic organisation of bacterial outer membrane proteins. Nat Commun 9:2846. https://doi.org/10.1038/s41467-018-05255-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Holdbrook DA, Huber RG, Piggot TJ et al (2016) Dynamics of crowded vesicles: local and global responses to membrane composition. PLoS One 11:e0156963. https://doi.org/10.1371/journal.pone.0156963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jefferies D, Khalid S (2020) To infect or not to infect: molecular determinants of bacterial outer membrane vesicle internalization by host membranes. J Mol Biol 432:1251–1264. https://doi.org/10.1016/J.JMB.2020.01.008

    Article  CAS  PubMed  Google Scholar 

  35. Berendsen HJC, Postma JPM, van Gunsteren WF et al (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690. https://doi.org/10.1063/1.448118

    Article  CAS  Google Scholar 

  36. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101. https://doi.org/10.1063/1.2408420

    Article  CAS  PubMed  Google Scholar 

  37. Parrinello M, Rahman A (1980) Crystal structure and pair potentials: a molecular-dynamics study. Phys Rev Lett 45:1196–1199. https://doi.org/10.1103/PhysRevLett.45.1196

    Article  CAS  Google Scholar 

  38. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190. https://doi.org/10.1063/1.328693

    Article  CAS  Google Scholar 

  39. Jones JE (1924) On the determination of molecular fields. I. From the variation of the viscosity of a gas with temperature. Proc R Soc A Math Phys Eng Sci 106:441–462. https://doi.org/10.1098/rspa.1924.0081

    Article  CAS  Google Scholar 

  40. Jones JE (1924) On the determination of molecular fields. II. From the equation of state of a gas. Proc R Soc London A 106:463–477. https://doi.org/10.1098/rspa.1924.0082

    Article  CAS  Google Scholar 

  41. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an Nlog(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092. https://doi.org/10.1063/1.464397

    Article  CAS  Google Scholar 

  42. Krieger E, Vriend G (2015) New ways to boost molecular dynamics simulations. J Comput Chem 36:996–1007. https://doi.org/10.1002/jcc.23899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wassenaar TA, Pluhackova K, Böckmann RA et al (2014) Going backward: a flexible geometric approach to reverse transformation from coarse grained to atomistic models. J Chem Theory Comput 10:676–690. https://doi.org/10.1021/ct400617g

    Article  CAS  PubMed  Google Scholar 

  44. MacKerell AD, Banavali N, Foloppe N (2000) Development and current status of the CHARMM force field for nucleic acids. Biopolymers 56:257–265. https://doi.org/10.1002/1097-0282(2000)56:4<257::AID-BIP10029>3.0.CO;2-W

    Article  CAS  PubMed  Google Scholar 

  45. Huang J, MacKerell AD (2013) CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J Comput Chem 34:2135–2145. https://doi.org/10.1002/jcc.23354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. MacKerell AD, Bashford D, Bellott M et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616. https://doi.org/10.1021/jp973084f

    Article  CAS  PubMed  Google Scholar 

  47. Maciejewski A, Pasenkiewicz-Gierula M, Cramariuc O et al (2014) Refined OPLS all-atom force field for saturated phosphatidylcholine bilayers at full hydration. J Phys Chem B 118:4571–4581. https://doi.org/10.1021/jp5016627

    Article  CAS  PubMed  Google Scholar 

  48. Ulmschneider JP, Ulmschneider MB (2009) United atom lipid parameters for combination with the optimized potentials for liquid simulations all-atom force field. J Chem Theory Comput 5:1803–1813. https://doi.org/10.1021/ct900086b

    Article  CAS  PubMed  Google Scholar 

  49. van Gunsteren WF, Billeter SR, Eising AA et al (1996) Biomolecular simulation: the GROMOS96 manual and user guide. Vdf Hochschulverlag AG an der ETH Zürich, Zürich

    Google Scholar 

  50. Schuler LD, Daura X, van Gunsteren WF (2001) An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. J Comput Chem 22:1205–1218. https://doi.org/10.1002/jcc.1078

    Article  CAS  Google Scholar 

  51. van Gunsteren WF, Berendsen HJC (1987) Groningen molecular simulation (GROMOS) library manual. Biomos, Groningen

    Google Scholar 

  52. Jo S, Cheng X, Lee J et al (2017) CHARMM-GUI 10 years for biomolecular modeling and simulation. J Comput Chem 38:1114–1124. https://doi.org/10.1002/jcc.24660

    Article  CAS  PubMed  Google Scholar 

  53. Ghahremanpour MM, Arab SS, Aghazadeh SB et al (2014) MemBuilder: a web-based graphical interface to build heterogeneously mixed membrane bilayers for the GROMACS biomolecular simulation program. Bioinformatics 30:439–441. https://doi.org/10.1093/bioinformatics/btt680

    Article  CAS  PubMed  Google Scholar 

  54. Balabin IVMD membrane plugin. https://www.ks.uiuc.edu/Research/vmd/plugins/membrane

  55. Doerr S, Giorgino T, Martínez-Rosell G et al (2017) High-throughput automated preparation and simulation of membrane proteins with HTMD. J Chem Theory Comput 13:4003–4011. https://doi.org/10.1021/acs.jctc.7b00480

    Article  CAS  PubMed  Google Scholar 

  56. Wu X, Brooks BR (2003) Self-guided Langevin dynamics simulation method. Chem Phys Lett 381:512–518. https://doi.org/10.1016/J.CPLETT.2003.10.013

    Article  CAS  Google Scholar 

  57. Orsi M, Ding W, Palaiokostas M (2014) Direct mixing of atomistic solutes and coarse-grained water. J Chem Theory Comput 10:4684–4693. https://doi.org/10.1021/ct500065k

    Article  CAS  PubMed  Google Scholar 

  58. Genheden S, Essex JW (2015) A simple and transferable all-atom/coarse-grained hybrid model to study membrane processes. J Chem Theory Comput 11:4749–4759. https://doi.org/10.1021/acs.jctc.5b00469

    Article  CAS  PubMed  Google Scholar 

  59. Genheden S (2018) ELBA. https://github.com/SGenheden/Elba

  60. Dahl ACE, Chavent M, Sansom MSP (2012) Bendix: intuitive helix geometry analysis and abstraction. Bioinformatics 28:2193. https://doi.org/10.1093/BIOINFORMATICS/BTS357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lv Z, Tek A, Da Silva F et al (2013) Game on, science – how video game technology may help biologists tackle visualization challenges. PLoS One 8:e57990. https://doi.org/10.1371/journal.pone.0057990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Doutreligne S, Gageat C, Cragnolini T et al (2015) UnityMol: interactive and ludic visual manipulation of coarse-grained RNA and other biomolecules. In: 2015 IEEE 1st international workshop on virtual and augmented reality for molecular science (VARMS@IEEEVR). IEEE, New York, NY, pp 1–6

    Google Scholar 

  63. Doutreligne S, Cragnolini T, Pasquali S et al (2014) UnityMol: interactive scientific visualization for integrative biology. In: 2014 IEEE 4th symposium on large data analysis and visualization (LDAV). IEEE, New York, NY, pp 109–110

    Chapter  Google Scholar 

  64. Bereau T, Kremer K (2015) Automated parametrization of the coarse-grained Martini force field for small organic molecules. J Chem Theory Comput 11:2783–2791. https://doi.org/10.1021/acs.jctc.5b00056

    Article  CAS  PubMed  Google Scholar 

  65. Graham JA, Essex JW, Khalid S (2017) PyCGTOOL: automated generation of coarse-grained molecular dynamics models from atomistic trajectories. J Chem Inf Model 57:650–656. https://doi.org/10.1021/acs.jcim.7b00096

    Article  CAS  PubMed  Google Scholar 

  66. Atsmon-Raz Y, Tieleman DP (2017) Parameterization of palmitoylated cysteine, farnesylated cysteine, geranylgeranylated cysteine, and myristoylated glycine for the Martini force field. J Phys Chem B 121:11132–11143. https://doi.org/10.1021/acs.jpcb.7b10175

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thanks Matthieu Chavent for details of UnityMol.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Philip C. Biggin or Syma Khalid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Glass, W.G. et al. (2021). Coarse-Grained Molecular Dynamics Simulations of Membrane Proteins: A Practical Guide. In: Schmidt-Krey, I., Gumbart, J.C. (eds) Structure and Function of Membrane Proteins. Methods in Molecular Biology, vol 2302. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1394-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1394-8_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1393-1

  • Online ISBN: 978-1-0716-1394-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics