Skip to main content

14C-Tracing of Lipid Metabolism

  • Protocol
  • First Online:
Plant Lipids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2295))

Abstract

Lipids are produced through a dynamic metabolic network involving branch points, cycles, reversible reactions, parallel reactions in different subcellular compartments, and distinct pools of the same lipid class involved in different parts of the network. For example, diacylglycerol (DAG) is a biosynthetic and catabolic intermediate of many different lipid classes. Triacylglycerol can be synthesized from DAG assembled de novo, or from DAG produced by catabolism of membrane lipids, most commonly phosphatidylcholine. Quantification of lipids provides a snapshot of the lipid abundance at the time they were extracted from the given tissue. However, quantification alone does not provide information on the path of carbon flux through the metabolic network to synthesize each lipid. Understanding lipid metabolic flux requires tracing lipid metabolism with isotopically labeled substrates over time in living tissue. [14C]acetate and [14C]glycerol are commonly utilized substrates to measure the flux of nascent fatty acids and glycerol backbones through the lipid metabolic network in vivo. When combined with mutant or transgenic plants, tracing of lipid metabolism can provide information on the molecular control of lipid metabolic flux. This chapter provides a method for tracing in vivo lipid metabolism in developing Arabidopsis thaliana seeds, including analysis of 14C labeled lipid classes and fatty acid regiochemistry through both thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC) approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roughan PG, Slack CR (1982) Cellular-organization of glycerolipid metabolism. Annu Rev Plant Physiol Plant Mol Biol 33:97–132. https://doi.org/10.1146/annurev.pp.33.060182.000525

    Article  CAS  Google Scholar 

  2. Browse J, Somerville C (1991) Glycerolipid synthesis—biochemistry and regulation. Annu Rev Plant Physiol Plant Mol Biol 42:467–506. https://doi.org/10.1146/annurev.pp.42.060191.002343

    Article  CAS  Google Scholar 

  3. Harwood JL (1996) Recent advances in the biosynthesis of plant fatty acids. Biochim Biophys Acta 1301(1–2):7–56. https://doi.org/10.1016/0005-2760(95)00242-1

    Article  PubMed  Google Scholar 

  4. Bates PD, Browse J (2012) The significance of different diacylglycerol synthesis pathways on plant oil composition and bioengineering. Front Plant Sci 3:147. https://doi.org/10.3389/fpls.2012.00147

    Article  PubMed  PubMed Central  Google Scholar 

  5. Allen DK, Bates PD, Tjellström H (2015) Tracking the metabolic pulse of plant lipid production with isotopic labeling and flux analyses: past, present and future. Progr Lipid Res 58:97–120. https://doi.org/10.1016/j.plipres.2015.02.002

    Article  CAS  Google Scholar 

  6. Bates PD (2016) Understanding the control of acyl flux through the lipid metabolic network of plant oil biosynthesis. Biochim Biophys Acta 1861(9, Part B):1214–1225. https://doi.org/10.1016/j.bbalip.2016.03.021

    Article  CAS  PubMed  Google Scholar 

  7. Kunst L, Browse J, Somerville C (1988) Altered regulation of lipid biosynthesis in a mutant of Arabidopsis deficient in chloroplast glycerol-3-phosphate acyltransferase activity. Proc Natl Acad Sci U S A 85(12):4143–4147. https://doi.org/10.1073/pnas.85.12.4143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xu CC, Fan JL, Riekhof W, Froehlich JE, Benning C (2003) A permease-like protein involved in ER to thylakoid lipid transfer in Arabidopsis. EMBO J 22(10):2370–2379. https://doi.org/10.1093/emboj/cdg234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bates PD, Browse J (2011) The pathway of triacylglycerol synthesis through phosphatidylcholine in Arabidopsis produces a bottleneck for the accumulation of unusual fatty acids in transgenic seeds. Plant J 68(3):387–399. https://doi.org/10.1111/j.1365-313X.2011.04693.x

    Article  CAS  PubMed  Google Scholar 

  10. Bates PD, Fatihi A, Snapp AR, Carlsson AS, Browse J, Lu C (2012) Acyl editing and headgroup exchange are the major mechanisms that direct polyunsaturated fatty acid flux into triacylglycerols. Plant Physiol 160(3):1530–1539. https://doi.org/10.1104/pp.112.204438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bates PD, Johnson SR, Cao X, Li J, Nam J-W, Jaworski JG, Ohlrogge JB, Browse J (2014) Fatty acid synthesis is inhibited by inefficient utilization of unusual fatty acids for glycerolipid assembly. Proc Natl Acad Sci U S A 111(3):1204–1209. https://doi.org/10.1073/pnas.1318511111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Karki N, Johnson BS, Bates PD (2019) Metabolically distinct pools of phosphatidylcholine are involved in trafficking of fatty acids out of and into the chloroplast for membrane production. Plant Cell 31(11):2768–2788. https://doi.org/10.1105/tpc.19.00121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tjellström H, Strawsine M, Ohlrogge JB (2015) Tracking synthesis and turnover of triacylglycerol in leaves. J Exp Bot 66(5):1453–1461. https://doi.org/10.1093/jxb/eru500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Focks N, Benning C (1998) wrinkled1: a novel, low-seed-oil mutant of Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism. Plant Physiol 118(1):91–101. https://doi.org/10.1104/pp.118.1.91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Baud S, Boutin JP, Miquel M, Lepiniec L, Rochat C (2002) An integrated overview of seed development in Arabidopsis thaliana ecotype WS. Plant Physiol Biochem 40(2):151–160. https://doi.org/10.1016/S0981-9428(01)01350-X

    Article  CAS  Google Scholar 

  16. Li YH, Beisson F, Pollard M, Ohlrogge J (2006) Oil content of Arabidopsis seeds: the influence of seed anatomy, light and plant-to-plant variation. Phytochemistry 67(9):904–915. https://doi.org/10.1016/j.phytochem.2006.02.015

    Article  CAS  PubMed  Google Scholar 

  17. Karki N, Bates PD (2018) The effect of light conditions on interpreting oil composition engineering in Arabidopsis seeds. Plant Direct 2(6):e00067. https://doi.org/10.1002/pld3.67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bao XM, Pollard M, Ohlrogge J (1998) The biosynthesis of erucic acid in developing embryos of Brassica rapa. Plant Physiol 118(1):183–190. https://doi.org/10.1104/pp.118.1.183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shintani DK, Ohlrogge JB (1995) Feedback inhibition of fatty-acid synthesis in tobacco suspension cells. Plant J 7(4):577–587. https://doi.org/10.1046/j.1365-313X.1995.7040577.x

    Article  CAS  Google Scholar 

  20. Bates PD, Ohlrogge JB, Pollard M (2007) Incorporation of newly synthesized fatty acids into cytosolic glycerolipids in pea leaves occurs via acyl editing. J Biol Chem 282(43):31206–31216. https://doi.org/10.1074/jbc.M705447200

    Article  CAS  PubMed  Google Scholar 

  21. Bates PD, Durrett TP, Ohlrogge JB, Pollard M (2009) Analysis of acyl fluxes through multiple pathways of triacylglycerol synthesis in developing soybean embryos. Plant Physiol 150(1):55–72. https://doi.org/10.1104/pp.109.137737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tjellström H, Yang Z, Allen DK, Ohlrogge JB (2012) Rapid kinetic labeling of Arabidopsis cell suspension cultures: implications for models of lipid export from plastids. Plant Physiol 158(2):601–611. https://doi.org/10.1104/pp.111.186122

    Article  CAS  PubMed  Google Scholar 

  23. Zhou XR, Bhandari S, Johnson BS, Kotapati HK, Allen DK, Vanhercke T, Bates PD (2020) Reorganization of acyl flux through the lipid metabolic network in oil-accumulating tobacco leaves. Plant Physiol 182(2):739–755. https://doi.org/10.1104/pp.19.00667

    Article  CAS  PubMed  Google Scholar 

  24. Lu C, Xin Z, Ren Z, Miquel M, Browse J (2009) An enzyme regulating triacylglycerol composition is encoded by the ROD1 gene of Arabidopsis. Proc Natl Acad Sci U S A 106(44):18837–18842. https://doi.org/10.1073/pnas.0908848106

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yang W, Wang G, Li J, Bates PD, Wang X, Allen DK (2017) Phospholipase Dζ enhances diacylglycerol flux into triacylglycerol. Plant Physiol 174(1):110–123. https://doi.org/10.1104/pp.17.00026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Williams JP, Imperial V, Khan MU, Hodson JN (2000) The role of phosphatidylcholine in fatty acid exchange and desaturation in Brassica napus L. leaves. Biochem J 349:127–133. https://doi.org/10.1042/0264-6021:3490127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Slack CR, Roughan PG, Balasingham N (1977) Labeling studies in vivo on metabolism of acyl and glycerol moieties of glycerolipids in developing maize leaf. Biochem J 162(2):289–296. https://doi.org/10.1042/bj1620289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bates PD, Browse J (2011) The pathway of triacylglycerol synthesis through phosphatidylcholine in Arabidopsis produces a bottleneck for the accumulation of unusual fatty acids in transgenic seeds. Plant J 68(3):387–399. https://doi.org/10.1111/j.1365-313X.2011.04693.x

    Article  CAS  PubMed  Google Scholar 

  29. Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11(5):591–592. https://doi.org/10.1042/bst0110591

    Article  CAS  Google Scholar 

  30. Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, Debono A, Durrett TP, Franke RB, Graham IA, Katayama K, Kelly AA, Larson T, Markham JE, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid KM, Wada H, Welti R, Xu C, Zallot R, Ohlrogge J (2013) Acyl-lipid metabolism. Am Soc Plant Biol 11:e0161. https://doi.org/10.1199/tab.0161

    Article  Google Scholar 

  31. Lin JT (2007) HPLC separation of acyl lipid classes. J Liquid Chromatogr Rel Technol 30(14):2005–2020. https://doi.org/10.1080/10826070701435020

    Article  CAS  Google Scholar 

  32. Kotapati HK, Bates PD (2018) A normal phase high performance liquid chromatography method for the separation of hydroxy and non-hydroxy neutral lipid classes compatible with ultraviolet and in-line liquid scintillation detection of radioisotopes. J Chromatogr B 1102-1103:52–59. https://doi.org/10.1016/j.jchromb.2018.10.012

    Article  CAS  Google Scholar 

  33. Kotapati HK, Bates PD (2020) Normal phase HPLC method for combined separation of both polar and neutral lipid classes with application to lipid metabolic flux. J Chromatogr B 1145:122099. https://doi.org/10.1016/j.jchromb.2020.122099

    Article  CAS  Google Scholar 

  34. Cahoon EB, Dietrich CR, Meyer K, Damude HG, Dyer JM, Kinney AJ (2006) Conjugated fatty acids accumulate to high levels in phospholipids of metabolically engineered soybean and Arabidopsis seeds. Phytochemistry 67(12):1166–1176. https://doi.org/10.1016/j.phytochem.2006.04.013

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip D. Bates .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kotapati, H.K., Bates, P.D. (2021). 14C-Tracing of Lipid Metabolism. In: Bartels, D., Dörmann, P. (eds) Plant Lipids. Methods in Molecular Biology, vol 2295. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1362-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1362-7_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1361-0

  • Online ISBN: 978-1-0716-1362-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics