Skip to main content

Measurement of the Intracellular Mycobacterium tuberculosis Drug Effect and Prediction of the Clinical Dose–Response Relationship Using Intracellular Pharmacodynamic Modeling (PDi)

  • 611 Accesses

Part of the Methods in Molecular Biology book series (MIMB,volume 2296)

Abstract

The human disease tuberculosis (TB) is the leading cause of death from a single infectious agent. A quarter of the world’s population is estimated to be latently infected. Drug development and screening is slow and costly. We have developed a physiologically relevant assay to screen drugs against TB when inside immune cells. This chapter will describe a newly developed preclinical drug screening assay for TB, using high-content imaging and pharmacokinetic/pharmacodynamic modeling.

Key words

  • Tuberculosis
  • Drug screening
  • Mycobacteria
  • Antibiotics
  • Pharmacokinetic and pharmacodynamic drug Modeling

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-1358-0_23
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-1358-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. WHO (2019) Global TB report

    Google Scholar 

  2. Donnellan S, Giardiello M (2019) Nanomedicines towards targeting intracellular Mtb for the treatment of tuberculosis. J Interdiscip Nanomedicine 4:1–10

    CrossRef  Google Scholar 

  3. Smith J (2011) Nanoparticle delivery of anti-tuberculosis chemotherapy as a potential mediator against drug-resistant tuberculosis. Yale J Biol Med 84:361–369

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Verschoor J, Baird M, Grooten J (2012) Towards understanding the functional diversity of cell wall mycolic acids of Mycobacterium tuberculosis. Prog Lipid Res 51:325–339

    CAS  CrossRef  Google Scholar 

  5. Ohara N (2012) Current status of tuberculosis and recombinant bacillus Calmette-Guérin vaccines. J Oral Biosci 54:92–95

    CAS  CrossRef  Google Scholar 

  6. Gillespie SH (2016) The role of moxifloxacin in tuberculosis therapy. Eur Respir Rev 25:19–28

    CrossRef  Google Scholar 

  7. Aljayyoussi G, Jenkins VA, Sharma R, Ardrey A, Donnellan S, Ward SA, Biagini GA (2017) Pharmacokinetic-pharmacodynamic modelling of intracellular Mycobacterium tuberculosis growth and kill rates is predictive of clinical treatment duration. Sci Rep 7:502

    CrossRef  Google Scholar 

  8. Digby, Mizrahi V (2007) The survival kit of Mycobacterium tuberculosis. Nat Med 13:282–284

    CrossRef  Google Scholar 

  9. De Steenwinkel JEM, Aarnoutse RE, De Knegt GJ, Ten Kate MT, Teulen M, Verbrugh HA, Boeree MJ, Van Soolingen D, Bakker-Woudenberg IAJM (2013) Optimization of the rifampin dosage to improve the therapeutic efficacy in tuberculosis treatment using a murine model. Am J Respir Crit Care Med 187:1127–1134

    CrossRef  Google Scholar 

  10. Weiner M, Savic RM, Kenzie WR, Wing D, Peloquin CA, Engle M, Bliven E, Prihoda TJ, Gelfond JA, Scott NA, Abdel-Rahman SM, Kearns GL, Burman WJ, Sterling TR, Villarino ME, Tuberculosis Trials Consortium PTBPG (2014) Rifapentine pharmacokinetics and tolerability in children and adults treated once weekly with Rifapentine and isoniazid for latent tuberculosis infection. J Pediatr Infect Dis Soc 3:132–145

    CrossRef  Google Scholar 

  11. Ferlazzo G, Mohr E, Laxmeshwar C, Hewison C, Hughes J, Jonckheere S, Khachatryan N, De Avezedo V, Egazaryan L, Shroufi A, Kalon S, Cox H, Furin J, Isaakidis P (2018) Early safety and efficacy of the combination of bedaquiline and delamanid for the treatment of patients with drug-resistant tuberculosis in Armenia, India, and South Africa: a retrospective cohort study. Lancet Infect Dis 18:536–544

    CAS  CrossRef  Google Scholar 

  12. Bartelink IH, Zhang N, Keizer RJ, Strydom N, Converse PJ, Dooley KE, Nuermberger EL, Savic RM (2017) New paradigm for translational modeling to predict long-term tuberculosis treatment response. Clin Transl Sci 10:366–379

    CAS  CrossRef  Google Scholar 

  13. Lanoix E, Chaisson R, Nuermberger E (2016) Shortening tuberculosis treatment with fluoroquinolones: lost in translation? Clin Infect Dis 62:484–490

    CAS  PubMed  Google Scholar 

  14. Rosenthal IM, Tasneen R, Peloquin CA, Zhang M, Almeida D, Mdluli KE, Karakousis PC, Grosset JH, Nuermberger EL (2012) Dose-ranging comparison of rifampin and rifapentine in two pathologically distinct murine models of tuberculosis. Antimicrob Agents Chemother 56:4331–4340

    CAS  CrossRef  Google Scholar 

  15. Aljayyoussi G, Donnellan S, Ward SA, Biagini GA (2019) Intracellular PD modelling (PDi) for the prediction of clinical activity of increased rifampicin dosing. Pharmaceutics 11:6–8

    CrossRef  Google Scholar 

  16. Donnellan S, Aljayyoussi G, Moyo E, Ardrey A, Martinez-Rodriguez C, Ward SA, Biagini GA (2019) Intracellular pharmacodynamic modelling (PDi) is predictive of the clinical activity of fluoroquinolones against tuberculosis. Antimicrob Agents Chemother 64:1

    CrossRef  Google Scholar 

  17. Boeree MJ, Heinrich N, Aarnoutse R, Diacon AH, Dawson R, Rehal S, Kibiki GS, Churchyard G, Sanne I, Ntinginya NE, Minja LT, Hunt RD, Charalambous S, Hanekom M, Semvua HH, Mpagama SG, Manyama C, Mtafya B, Reither K, Wallis RS, Venter A, Narunsky K, Mekota A, Henne S, Colbers A, van Balen GP, Gillespie SH, Phillips PPJ, Hoelscher M (2017) High-dose rifampicin, moxifloxacin, and SQ109 for treating tuberculosis: a multi-arm, multi-stage randomised controlled trial. Lancet Infect Dis 17:39–49

    CAS  CrossRef  Google Scholar 

  18. Rich JT, Neeley JG, Paniello RC, Voelker CCJ, Oxon DP, Nussenbaum B, Wang EW (2014) A practical Guid to understanding Kaplan-Meier curves. J Otolaryngol Head Neck Surg 143:331–336

    CrossRef  Google Scholar 

  19. Smith I (2003) Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin Microbiol Rev 16:463–496

    CAS  CrossRef  Google Scholar 

  20. Holford N, Sheiner L (1981) Understanding the dose-effect relationship: clinical application of pharmacokinetic-pharmacodynamic models. Clin Pharmacokinet 6:429–454

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samantha Donnellan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Donnellan, S., Martínez-Rodríguez, C., Aljayyoussi, G., Biagini, G.A. (2021). Measurement of the Intracellular Mycobacterium tuberculosis Drug Effect and Prediction of the Clinical Dose–Response Relationship Using Intracellular Pharmacodynamic Modeling (PDi). In: Barreiro, C., Barredo, JL. (eds) Antimicrobial Therapies. Methods in Molecular Biology, vol 2296. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1358-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1358-0_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1357-3

  • Online ISBN: 978-1-0716-1358-0

  • eBook Packages: Springer Protocols