Advertisement

Albino Plant Formation in Androgenic Cultures: An Old Problem and New Facts

Protocol
  • 38 Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 2288)

Abstract

High frequency of albino plant formation in isolated microspore or anther cultures is a great problem limiting the possibility of their exploitation on a wider scale. It is highly inconvenient as androgenesis-based doubled haploid (DH) technology provides the simplest and shortest way to total homozygosity, highly valued by plant geneticists, biotechnologists and especially, plant breeders, and this phenomenon constitutes a serious limitation of these otherwise powerful tools. The genotype-dependent tendency toward albino plant formation is typical for many monocotyledonous plants, including cereals like wheat, barley, rice, triticale, oat and rye — the most important from the economical point of view. Despite many efforts, the precise mechanism underlying chlorophyll deficiency has not yet been elucidated. In this chapter, we review the data concerning molecular and physiological control over proper/disturbed chloroplast biogenesis, old hypotheses explaining the mechanism of chlorophyll deficiency, and recent studies which shed new light on this phenomenon.

Key words

Albinism Androgenesis Doubled haploids Microspore embryogenesis 

References

  1. 1.
    Leake JR (1994) The biology of myco-heterotrophic (‘saprophytic’) plants. New Phytol 127:171–216PubMedCrossRefGoogle Scholar
  2. 2.
    Kumari M, Clarke HJ, Small I et al (2009) Albinism in plants: a major bottleneck in wide hybridization, androgenesis and doubled haploid culture. Crit Rev Plant Sci 28:393–409.  https://doi.org/10.1080/07352680903133252 CrossRefGoogle Scholar
  3. 3.
    Caredda S, Clément C (1999) Androgenesis and albinism in Poaceae: influence of genotype and carbohydrates. In: Clément C, Pacini E, Audran JC (eds) Anther and pollen: from biology to biotechnology. Springer, Berlin, pp 211–228CrossRefGoogle Scholar
  4. 4.
    Cistué L, Soriano M, Castillo AM et al (2006) Production of doubled haploids in durum wheat (Triticum turgidum L.) through isolated microspore culture. Plant Cell Rep 25:257–264.  https://doi.org/10.1007/s00299-005-0047-8 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Čalić D, Bohanec B, Devrnja N et al (2013) Impact of abscisic acid in overcoming the problem of albinism in horse chestnut androgenic embryos. Trees 27:755–762.  https://doi.org/10.1007/s00468-012-0830-4 CrossRefGoogle Scholar
  6. 6.
    Gajecka M, Marzec M, Chmielewska B et al (2020) Plastid differentiation during microgametogenesis determines green plant regeneration in barley microspore culture. Plant Sci 291:110321PubMedCrossRefGoogle Scholar
  7. 7.
    Mullet JE (1993) Dynamic regulation of chloroplast transcription. Plant Physiol 103:309–313.  https://doi.org/10.1104/pp.103.2.309 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Moreira D, Le Guyader H, Philippe H (2000) The origin of red algae and the evolution of chloroplasts. Nature 405(6782):69–72.  https://doi.org/10.1038/35011054 CrossRefPubMedGoogle Scholar
  9. 9.
    Sugimoto H, Kusumi K, Tozawa Y et al (2004) The virescent-2, mutation inhibits translation of plastid transcripts for the plastid genetic system at an early stage of chloroplast differentiation. Plant Cell Physiol 45:985–996PubMedCrossRefGoogle Scholar
  10. 10.
    Sadali NM, Sowden RG, Ling Q et al (2019) Differentiation of chromoplasts and other plastids in plants. Plant Cell Rep 38:803–818.  https://doi.org/10.1007/s00299-019-02420-2 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Pogson BJ, Albrecht V (2011) Genetic dissection of chloroplast biogenesis and development: an overview. Plant Physiol 155:1545–1551PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Andriankaja M, Dhondt S, De Bodt S et al (2012) Exit from proliferation during leaf development in Arabidopsis thaliana: a not-so-gradual process. Dev Cell 22:64–78PubMedCrossRefGoogle Scholar
  13. 13.
    Pribil M, Labs M, Leister D (2014) Structure and dynamics of thylakoids in land plants. J Exp Bot 65(8):1955–1972.  https://doi.org/10.1093/jxb/eru090 CrossRefPubMedGoogle Scholar
  14. 14.
    Dubreuil C, Jin X, de Dios Barajas-López J et al (2018) Establishment of photosynthesis through chloroplast development is controlled by two distinct regulatory phases. Plant Physiol 176:1199–1214.  https://doi.org/10.1104/pp.17.00435 CrossRefPubMedGoogle Scholar
  15. 15.
    Sakamoto W, Takami T (2018) Chloroplast DNA dynamics: copy number, quality control and degradation. Plant Cell Physiol 59:1120–1127.  https://doi.org/10.1093/pcp/pcy084 CrossRefPubMedGoogle Scholar
  16. 16.
    Martin W, Rujan T, Richly E et al (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci U S A 99:12246–12251PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Zoschke R, Bock R (2018) Chloroplast translation: structural and functional organization, operational control, and regulation. Plant Cell 30:745–770PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Nelson N, Yocum CF (2006) Structure and function of photosystems I and II. Annu Rev Plant Biol 57(1):521–565.  https://doi.org/10.1146/annurev.arplant.57.032905.105350 CrossRefPubMedGoogle Scholar
  19. 19.
    Pogson BJ, Woo NS, Förster B, Small ID (2008) Plastid signalling to the nucleus and beyond. Trends Plant Sci 13:602–609PubMedCrossRefGoogle Scholar
  20. 20.
    Barajas-López JD, Blanco NE, Strand Å (2013) Plastid-to-nucleus communication, signals controlling the running of the plant cell. Biochim Biophys Acta 1833(2):425–437.  https://doi.org/10.1016/j.bbamcr.2012.06.020 CrossRefGoogle Scholar
  21. 21.
    Jarvis P (2008) Targeting of nucleus-encoded proteins to chloroplasts in plants. New Phytol 179:257–285.  https://doi.org/10.1111/j.1469-8137.2008.02452.x CrossRefPubMedGoogle Scholar
  22. 22.
    Waters MT, Langdale JA (2009) The making of a chloroplast. EMBO J 28:2861–2873PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Fitter DW, Martin DJ, Copley MJ et al (2002) GLK gene pairs regulate chloroplast development in diverse plant species. Plant J 31:713–727.  https://doi.org/10.1046/j.1365-313X.2002.01390.x CrossRefPubMedGoogle Scholar
  24. 24.
    Larkin R (2014) Influence of plastids on light signalling and development. Philos Trans R Soc B.  https://doi.org/10.1098/rstb.2013.0232
  25. 25.
    Hernández-Verdeja T, Strand Å (2018) Retrograde signals navigate the path to chloroplast development. Plant Physiol 176:967–976.  https://doi.org/10.1104/pp.17.01299 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Belcher S, Williams-Carrier R, Stiffler N et al (2015) Large-scale genetic analysis of chloroplast biogenesis in maize. Biochim Biophys Acta Bioenerg 1847:1004–1016.  https://doi.org/10.1016/j.bbabio.2015.02.014 CrossRefGoogle Scholar
  27. 27.
    Zhelyazkova P, Sharma CM, Forstner KU et al (2012) The primary transcriptome of barley chloroplasts: numerous noncoding RNAs and the dominating role of the plastid-encoded RNA polymerase. Plant Cell 24:123–136.  https://doi.org/10.1105/tpc.111.089441 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Liebers M, Grübler B, Chevalier F et al (2017) Regulatory shifts in plastid transcription play a key role in morphological conversions of plastids during plant development. Front Plant Sci 8:23.  https://doi.org/10.3389/fpls.2017.00023 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Börner T, Aleynikova AY, Zubo YO et al (2015) Chloroplast RNA polymerases: role in chloroplast biogenesis. Biochim Biophys Acta Bioenerg 1847:761–769.  https://doi.org/10.1016/j.bbabio.2015.02.004 CrossRefGoogle Scholar
  30. 30.
    Pfannschmidt T, Blanvillain R, Merendino L et al (2015) Plastid RNA polymerases: orchestration of enzymes with different evolutionary origins controls chloroplast biogenesis during the plant life cycle. J Exp Bot 66:6957–6973.  https://doi.org/10.1093/jxb/erv415 CrossRefPubMedGoogle Scholar
  31. 31.
    Kanamaru K, Nagashima A, Fujiwara M et al (2001) An arabidopsis sigma factor (SIG2)-dependent expression of plastid-encoded tRNAs in chloroplasts. Plant Cell Physiol 42:1034–1043.  https://doi.org/10.1093/pcp/pce155 CrossRefPubMedGoogle Scholar
  32. 32.
    Hanaoka M, Kanamaru K, Fujiwara M et al (2005) Glutamyl-tRNA mediates a switch in RNA polymerase use during chloroplast biogenesis. EMBO Rep 6:545–550.  https://doi.org/10.1038/sj.embor.7400411 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Woodson JD, Perez-Ruiz JM, Schmitz RJ et al (2013) Sigma factor-mediated plastid retrograde signals control nuclear gene expression. Plant J 73:1–13.  https://doi.org/10.1111/tpj.12011 CrossRefPubMedGoogle Scholar
  34. 34.
    Liere K, Weihe A, Börner T (2011) The transcription machineries of plant mitochondria and chloroplasts: composition, function, and regulation. J Plant Physiol 168:1345–1360.  https://doi.org/10.1016/j.jplph.2011.01.005 CrossRefPubMedGoogle Scholar
  35. 35.
    De Santis-Maciossek G, Kofer W, Bock A et al (1999) Targeted disruption of the plastid RNA polymerase genes rpoA, B and C1: molecular biology, biochemistry and ultrastructure. Plant J 18:477–489.  https://doi.org/10.1046/j.1365-313X.1999.00473.x CrossRefPubMedGoogle Scholar
  36. 36.
    Hricová A, Quesada V, Micol JL (2006) The SCABRA3 nuclear gene encodes the plastid RpoTp RNA polymerase, which is required for chloroplast biogenesis and mesophyll cell proliferation in Arabidopsis. Plant Physiol 141:942–956.  https://doi.org/10.1104/pp.106.080069 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Tanz SK, Kilian J, Johnsson C et al (2012) The SCO2 protein disulphide isomerase is required for thylakoid biogenesis and interacts with LHCB1 chlorophyll a/b binding proteins which affects chlorophyll biosynthesis in Arabidopsis seedlings. Plant J 69(5):743–754.  https://doi.org/10.1111/j.1365-313X.2011.04833.x CrossRefPubMedGoogle Scholar
  38. 38.
    Okazaki K, Kabeya Y, Miyagishima S (2010) The evolution of the regulatory mechanism of chloroplast division. Plant Signal Behav 5(2):164–167PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Cortleven A, Schmülling T (2015) Regulation of chloroplast development and function by cytokinin. J Exp Bot 66:4999–5013.  https://doi.org/10.1093/jxb/erv132 CrossRefPubMedGoogle Scholar
  40. 40.
    Cortleven A, Marg I, Yamburenko MV et al (2016) Cytokinin regulates the etioplast-chloroplast transition through the two-component signalling system and activation of chloroplast-related genes. Plant Physiol 172(1):464–478.  https://doi.org/10.1104/pp.16.00640 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Shanmugabalaji V, Chahtane H, Accossato S et al (2018) Chloroplast biogenesis controlled by DELLA-TOC159 interaction in early plant development. Curr Biol 28:2616–2623.e5.  https://doi.org/10.1016/j.cub.2018.06.006 CrossRefPubMedGoogle Scholar
  42. 42.
    Jiang X, Li H, Wang T et al (2012) Gibberellin indirectly promotes chloroplast biogenesis as a means to maintain the chloroplast population of expanded cells. Plant J 72(5):768–780.  https://doi.org/10.1111/j.1365-313X.2012.05118.x. CrossRefPubMedGoogle Scholar
  43. 43.
    Yamburenko MV, Zubo YO, Borner T (2015) Abscisic acid affects transcription of chloroplast genes via protein phosphatase 2C-dependent activation of nuclear genes: repression by guanosine-30-50-bisdiphosphate and activation by sigma factor 5. Plant J 82:1030–1041.  https://doi.org/10.1111/tpj.12876 CrossRefPubMedGoogle Scholar
  44. 44.
    Wang ZY, Bai MY, Oh E et al (2012) Brassinosteroid signaling network and regulation of photomorphogenesis. Annu Rev Genet 46:701–724.  https://doi.org/10.1146/annurev-genet-102209-163450 CrossRefPubMedGoogle Scholar
  45. 45.
    Merchant SS, Prochnik SE, Vallon O et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318(5848):245–250.  https://doi.org/10.1126/science.1143609 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Yruela I (2005) Copper in plants. Braz J Plant Physiol 17(1):145–156CrossRefGoogle Scholar
  47. 47.
    Eisenhut M, Hoecker N, Schmidt SB et al (2018) The plastid envelope chloroplast manganese transporter1 is essential for manganese homeostasis in Arabidopsis. Mol Plant 11:955–969PubMedCrossRefGoogle Scholar
  48. 48.
    Ferroni L, Baldisserotto C, Fasulo MP et al (2009) Changes in proplastid organization promoted by an inhibitor of DNA-methyltransferase in dark-grown dividing Euglena gracilis cells. Plant Biosyst 143(2):241–251.  https://doi.org/10.1080/11263500902722410 CrossRefGoogle Scholar
  49. 49.
    Makowska K, Oleszczuk S (2014) Albinism in barley androgenesis. Plant Cell Rep 33:385–392.  https://doi.org/10.1007/s00299-013-1543-x CrossRefPubMedGoogle Scholar
  50. 50.
    Makowska K, Oleszczuk S, Zimny A et al (2015) Androgenic capability among genotypes of winter and spring barley. Plant Breed 134:668–674.  https://doi.org/10.1111/pbr.12312 CrossRefGoogle Scholar
  51. 51.
    Rubtsova M, Gnad H, Melzer M et al (2013) The auxins centrophenoxine and 2, 4-D differ in their effects on non-directly induced chromosome doubling in anther culture of wheat (T. aestivum L.). Plant Biotechnol Rep 7:247–255CrossRefGoogle Scholar
  52. 52.
    Redha A, Talaat A (2008) Improvement of green plant regeneration by manipulation of anther culture induction medium of hexaploid wheat. Plant Cell Tissue Organ Cult 92:141–146.  https://doi.org/10.1007/s11240-007-9315-3 CrossRefGoogle Scholar
  53. 53.
    Torp AM, Hansen AL, Andersen SB (2001) Chromosomal regions associated with green plant regeneration in wheat (Triticum aestivum L.) anther culture. Euphytica 119:377–387CrossRefGoogle Scholar
  54. 54.
    Liu W, Zheng MY, Konzak CF (2002) Improving green plant production via isolated microspore culture in bread wheat (Triticum aestivum L.). Plant Cell Rep 20:821–824CrossRefGoogle Scholar
  55. 55.
    Zheng MY, Liu W, Weng Y et al (2003) Production of doubled haploids in wheat (Triticum aestivum L.) through microspore embryogenesis triggered by inducer chemicals. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants, a manual. Kluwer Academic, Dordrecht, pp 83–94CrossRefGoogle Scholar
  56. 56.
    Haliloglu K, Baenziger PS (2003) The effects of age and size of wheat (Triticum aestivum L.) anther culture-derived embryos on regeneration of green and albino plantlets. Israel J Plant Sci 51(3):207–212CrossRefGoogle Scholar
  57. 57.
    Krzewska M, Czyczyło-Mysza I, Dubas E et al (2015) Identification of QTLs associated with albino plant formation and some new facts concerning green versus albino ratio determinants in triticale (×Triticosecale Wittm.) anther culture. Euphytica 206:263–278.  https://doi.org/10.1007/s10681-015-1509-x CrossRefGoogle Scholar
  58. 58.
    Mozgova G, Zaitseva O, Lemesh V (2012) Structural changes in chloroplast genome accompanying albinism in anther culture of wheat and triticale. Cereal Res Commun 40:467–475.  https://doi.org/10.1556/CRC.2012.0007 CrossRefGoogle Scholar
  59. 59.
    Pauk J, Puolimatka M, Tóth KL et al (2000) In vitro androgenesis of triticale in isolated microspore culture. Plant cell Tissue Organ Cult 61:221–229CrossRefGoogle Scholar
  60. 60.
    Tuvesson S, von Post R, Ljungberg A (2003) Triticale anther culture. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants. Springer, Dordrecht, pp 117–121.  https://doi.org/10.1007/978-94-017-1293-4_18 CrossRefGoogle Scholar
  61. 61.
    Oleszczuk S, Sowa S, Zimny J (2004) Direct embryogenesis and green plant regeneration from isolated microspores of hexaploid triticale (X Triticosecale Wittmack) cv. Bogo. Plant Cell Rep 22:885–893PubMedCrossRefGoogle Scholar
  62. 62.
    Warzecha R, Sowa S, Salak-Warzecha K et al (2005) Doubled haploids in production of male sterility maintaining triticale (Triticosecale Wittmack) lines. Acta Physiol Plant 27:245–250.  https://doi.org/10.1007/s11738-005-0029-z5 CrossRefGoogle Scholar
  63. 63.
    Grewal D, Gill R, Gosal SS (2006) Role of cysteine in enhancing androgenesis and regeneration of indica rice (Oryza sativa L.). Plant Growth Regul 49:43–47.  https://doi.org/10.1007/s10725-006-0021-7 CrossRefGoogle Scholar
  64. 64.
    He T, Yang Y, Tu SB et al (2006) Selection of interspecific hybrids for anther culture of indica rice. Plant Cell Tissue Organ Cult 86:271–277.  https://doi.org/10.1007/s11240-006-9117-z CrossRefGoogle Scholar
  65. 65.
    Talebi R, Rahemi MR, Arefi H et al (2007) In vitro plant regeneration through anther culture of some Iranian local rice (Oryza sativa L.) cultivars. PJBS 10:2056–2060.  https://doi.org/10.3923/pjbs.2007.2056.2060 CrossRefPubMedGoogle Scholar
  66. 66.
    Gueye T, Ndir KN (2010) In vitro production of double haploid plants from two rice species (Oryza sativa L. and Oryza glaberrima Steudt.) for the rapid development of new breeding material. Sci Res Essays 5(7):709–713Google Scholar
  67. 67.
    Kaushal L, Balachandran SM, Ulaganathan K et al (2014) Effect of culture media on improving anther culture response of rice (Oryza sativa L.). Int J Agric Innov Res 3(1):2319–1473Google Scholar
  68. 68.
    Thomas E, Hoffmann F, Wenzel G (1975) Haploid plantlets from microspores of rye. Z Pflanzen 75:106–113Google Scholar
  69. 69.
    Immonen S (1999) Androgenetic green plants from winter rye, Secale cereale L., of diverse origin. Plant Breed 118:319–322.  https://doi.org/10.1046/j.1439-0523.1999.00381.x CrossRefGoogle Scholar
  70. 70.
    Guo YD, Pulli S (2000) Isolated microspore culture and plant regeneration in rye (Secale cereale L.). Plant Cell Rep 19:875–880PubMedCrossRefGoogle Scholar
  71. 71.
    Ma R, Guo YD, Pulli S (2004) Comparison of anther and microspore culture in the embryogenesis and regeneration of rye, Secale cereale. Plant Cell Tissue Organ Cult 76:147–157.  https://doi.org/10.1023/B:TICU.0000007294.68389.ed CrossRefGoogle Scholar
  72. 72.
    Tenhola-Roininen T, Tanhuanpää P, Immonen S (2005) The effect of cold and heat treatments on the anther culture response of diverse rye genotypes. Euphytica 145:1–9.  https://doi.org/10.1007/s10681-005-8229-6 CrossRefGoogle Scholar
  73. 73.
    Kiviharju E, Moisander S, Laurila J (2005) Improved green plant regeneration rates from oat anther culture and the agronomic performance of some DH lines. Plant Cell Tissue Organ Cult 81:1–9.  https://doi.org/10.1007/s11240-004-1560-0 CrossRefGoogle Scholar
  74. 74.
    Sidhu P, Davies P (2009) Regeneration of fertile green plants from oat isolated microspore culture. Plant Cell Rep 28:571–577.  https://doi.org/10.1007/s00299-009-0684-4 CrossRefPubMedGoogle Scholar
  75. 75.
    Zieliński K, Krzewska M, Żur I et al (2020) The effect of glutathione and mannitol on androgenesis in anther and isolate d microspore cultures of rye (Secale cereale L.). Plant Cell Tissue Organ Cult 140:577–592.  https://doi.org/10.1007/s11240-019-01754-9 CrossRefGoogle Scholar
  76. 76.
    Jähne A, Becker D, Brettschneider R, Lörz H (1994) Regeneration of transgenic, microspore-derived, fertile barley. Theor Appl Genet 89:525–533.  https://doi.org/10.1007/BF00225390 CrossRefPubMedGoogle Scholar
  77. 77.
    Ritala A, Mannonen L, Oksman-Caldentey K-M (2001) Factors affecting the regeneration capacity of isolated barley microspores (Hordeum vulgare L). Plant Cell Rep 20:403–407PubMedCrossRefGoogle Scholar
  78. 78.
    Grigorova B, Vassileva V, Klimchuk D et al (2012) Drought, high temperature, and their combination affect ultrastructure of chloroplasts and mitochondria in wheat (Triticumaestivum L.) leaves. J Plant Interact 7(3):204–213.  https://doi.org/10.1080/17429145.2011.654134 CrossRefGoogle Scholar
  79. 79.
    Liu X-G, Xu H, Zhang J-Y, Liang G-W, Liu Y-T, Guo A-G (2012) Effect of low temperature on chlorophyll biosynthesis in albinism line of wheat (Triticum aestivum) FA85i. Physiol Plant 145(3):384–394.  https://doi.org/10.1111/j.1399-3054.2012.01604.x CrossRefPubMedGoogle Scholar
  80. 80.
    Rodríguez VM, Velasco P, Garrido JL et al (2013) Genetic regulation of cold-induced albinism in the maize inbred line A661. J Exp Bot 64(12):657–3667.  https://doi.org/10.1093/jxb/ert189 CrossRefGoogle Scholar
  81. 81.
    Gupta HS, Borthakur DN (1987) Improved rate of callus induction from rice anther culture following microscopic staging of microspores in iron alum-haematoxylin. Theor Appl Genet 74:95–99PubMedCrossRefGoogle Scholar
  82. 82.
    Tian Q, Lu C, Li X et al (2015) Low temperature treatments of rice (Oryza sativa L.) anthers changes polysaccharide and protein composition of the anther walls and increases pollen fertility and callus induction. Plant Cell Tissue Organ Cult 120:89–98.  https://doi.org/10.1007/s11240-014-0582-5 CrossRefGoogle Scholar
  83. 83.
    Caredda S, Devaux P, Sangwan RS, Clément C (1999) Differential development of plastids during microspore embryogenesis in barley. Protoplasma 208:248–256CrossRefGoogle Scholar
  84. 84.
    Oleszczuk S, Sowa S, Zimny J (2006) Androgenic response to preculture stress in microspore cultures of barley. Protoplasma 228:95–100.  https://doi.org/10.1007/s00709-006-0179-x CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Labbani Z, de Buyser J, Picard E (2007) Effect of mannitol pretreatment to improve green plant regeneration on isolated microspore culture in Triticum turgidum ssp. durum cv. ‘Jennah Khetifa’. Plant Breed 126:565–568.  https://doi.org/10.1111/j.1439-0523.2007.01399.x CrossRefGoogle Scholar
  86. 86.
    Roberts-Oehlschlager SL, Dunwel JM (1990) Barley anther culture: pretreatment on mannitol stimulates production of microspore-derived embryos. Plant Cell Tissue Organ Cult 20:235–240.  https://doi.org/10.1007/BF00041887 CrossRefGoogle Scholar
  87. 87.
    Hoekstra S, van Zijderveld MH, Louwerse JD et al (1992) Anther and microspore culture of Hordeum 6ulgare L. cv Igri. Plant Sci 86:89–96CrossRefGoogle Scholar
  88. 88.
    Hoekstra S, van Zijderveld MH, Heidekamp F et al (1993) Microspore culture of Hordeum vulgare L.: the influence of density and osmolality. Plant Cell Rep 12:661–665PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Hoekstra S, van Bergen S, van Brouwershaven IR et al (1997) Androgenesis in Hordeum vulgare L.: effects of mannitol, calcium and abscisic acid on anther pretreatment. Plant Sci 126:211–218CrossRefGoogle Scholar
  90. 90.
    Wojnarowiez G, Caredda S, Devaux P (2004) Barley anther culture: assessment of carbohydrate effects on embryo yield, green plant production and differential plastid development in relation with albinism. J Plant Physiol 161:747–755PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Castillo AM, Vallés MP, Cistué L (2000) Comparison of anther and isolated microspore cultures in barley. Effects of culture density and regeneration medium. Euphytica 113:1–8CrossRefGoogle Scholar
  92. 92.
    Lantos C, Bóna L, Boda K et al (2014) Comparative analysis of in vitro anther- and isolated microspore culture in hexaploid Triticale (X Triticosecale Wittmack) for androgenic parameters. Euphytica 197:27–37.  https://doi.org/10.1007/s10681-013-1031-y CrossRefGoogle Scholar
  93. 93.
    Lantos C, Bóna L, Nagy E et al (2018) Induction of in vitro androgenesis in anther and isolated microspore culture of different spelt wheat (Triticum spelta L.) genotypes. Plant Cell Tissue Organ Cult 133:385–393.  https://doi.org/10.1007/s11240-018-1391-z CrossRefGoogle Scholar
  94. 94.
    Li H, Devaux P (2005) Isolated microspore culture overperforms anther culture for green plant regeneration in barley (Hordeum vulgare L.). Acta Physiol Plant 27(4B):611–619CrossRefGoogle Scholar
  95. 95.
    Asif M, Eudes F, Randhawa H et al (2014) Induction medium osmolality improves microspore embryogenesis in wheat and triticale. In Vitro Cell Dev Biol Plant 50:121–126.  https://doi.org/10.1007/s11627-013-9545-5 CrossRefGoogle Scholar
  96. 96.
    Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  97. 97.
    Purnhauser L (1991) Stimulation of shoot and root regeneration in wheat Triticum aesti6um callus cultures by copper. Cereal Res Commun 19:419–423Google Scholar
  98. 98.
    Purnhauser L, Gyulai G (1993) Effect of copper on shoot and root regeneration in wheat, triticale, rape and tobacco tissue cultures. Plant Cell Tissue Organ Cult 35:131–139CrossRefGoogle Scholar
  99. 99.
    Wojnarowiez G, Jacquard C, Devaux P (2002) Influence of copper sulfate on anther culture in barley (Hordeum vulgare L.). Plant Sci 162:843–847CrossRefGoogle Scholar
  100. 100.
    Jacquard C, Nolin F, Hecart C et al (2009) Microspore embryogenesis and programmed cell death in barley: effects of copper on albinism in recalcitrant cultivars. Plant Cell Rep 28:1329–1339.  https://doi.org/10.1007/s00299-009-0733-z CrossRefPubMedGoogle Scholar
  101. 101.
    Makowska K, Kałużniak M, Oleszczuk S et al (2017) Arabinogalactan proteins improve plant regeneration in barley (Hordeum vulgare) anther culture. Plant Cell Tissue Organ Cult 131:247–257.  https://doi.org/10.1007/s11240-017-1280-x CrossRefGoogle Scholar
  102. 102.
    Ducic T, Polle A (2005) Transport and detoxification of manganese and copper in plants. Braz J Plant Physiol 17(1).  https://doi.org/10.1590/S1677-04202005000100009
  103. 103.
    Nuutila AM, Hämäläinen J, Mannonen L (2000) Optimization of media nitrogen and copper concentrations for regeneration of green plants from polyembryogenic cultures of barley (Hordeum vulgare L). Plant Sci 151:85–92CrossRefGoogle Scholar
  104. 104.
    Olsen FL (1991) Isolation and cultivation of embryogenic micropores from barley (Hordeum vulgare L.). Hereditas 115:255–266PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Mordhorst AP, Lörz H (1993) Embryogenesis and development of isolated barley (Hordeum vulgare L.) microspores are influenced by the amount and composition of nitrogen sources in culture media. J Plant Physiol 142:485–492CrossRefGoogle Scholar
  106. 106.
    Yoshida S, Kasai Y, Watanabe K et al (1999) Proline stimulates albino regeneration and seed-derived rice callus under high osmosis. J Plant Physiol 155:107–109CrossRefGoogle Scholar
  107. 107.
    Castillo AM, Sánchez-Díaz RA, Vallés MP (2015) Effect of ovary induction on bread wheat anther culture: ovary genotype and developmental stage, and candidate gene association. Front Plant Sci 6:402.  https://doi.org/10.3389/fpls.2015.00402 CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Broughton S (2008) Ovary co-culture improves embryo and green plant production in anther culture of Australian spring wheat (Triticum aestivum L.). Plant Cell Tissue Organ Cult 95:185–195.  https://doi.org/10.1007/s11240-008-9432-7 CrossRefGoogle Scholar
  109. 109.
    Cai Q, Szarejko I, Polok K et al (1992) The effect of sugars and growth regulators on embryoid formation and plant regeneration from barley anther culture. Plant Breed 109:218–226CrossRefGoogle Scholar
  110. 110.
    Tiwari S, Rahimbaev I (1992) Effect of barley starch in comparison and in combination with agar and agarose on anther culture in (Hordeum vulgare L.). Curr Sci 62:410–412Google Scholar
  111. 111.
    Lentini Z, Reyes P, Martinez CP et al (1995) Androgenesis of highly recalcitrant rice genotypes with maltose and silver nitrate. Plant Sci 110:127–138CrossRefGoogle Scholar
  112. 112.
    Park S, Ubaidillah M, Kim K (2013) Effect of maltose concentration on plant regeneration of anther culture with different genotypes in rice (Oryza sativa L.). Am J Plant Sci 4(11):2265–2270.  https://doi.org/10.4236/ajps.2013.411279 CrossRefGoogle Scholar
  113. 113.
    Estevez P, Clermont I, Marchand S et al (2014) Improving the efficiency of isolated microspore culture in six-row spring barley: II—exploring novel growth regulators to maximize embryogenesis and reduce albinism. Plant Cell Rep 33:871–879.  https://doi.org/10.1007/s00299-014-1563-1 CrossRefGoogle Scholar
  114. 114.
    Sah B (2008) Response of genotypes to culture media for callus induction and regeneration of plants from rice anthers. Sci World 6(6):37–43.  https://doi.org/10.3126/sw.v6i6.2632 CrossRefGoogle Scholar
  115. 115.
    Sriskandarajah S, Sameri M, Lerceteau-Köhler E et al (2015) Increased recovery of green doubled haploid plants from barley anther culture. Crop Sci 55:2806–2812CrossRefGoogle Scholar
  116. 116.
    Echávarri B, Cistué L (2016) Enhancement in androgenesis efficiency in barley (Hordeum vulgare L.) and bread wheat (Triticum aestivum L.) by the addition of dimethyl sulfoxide to the mannitol pretreatment medium. Plant Cell Tissue Organ Cult 125:11–22.  https://doi.org/10.1007/s11240-015-0923-z CrossRefGoogle Scholar
  117. 117.
    Kao KN, Saleem M, Abrams S et al (1991) Culture conditions for induction of green plants from barley microspores by anther culture methods. Plant Cell Rep 9:595–601PubMedCrossRefGoogle Scholar
  118. 118.
    Zhou H, Zheng Y, Konzak CF (1991) Osmotic potential of media affecting green plant percentage in wheat anther culture. Plant Cell Rep 10(2):63–66PubMedCrossRefGoogle Scholar
  119. 119.
    Zhou H, Ball ST, Konzak CF (1992) Functional properties of ficoll and their influence on anther culture responses of wheat. Plant Cell Tissue Organ Cult 30(1):77–83CrossRefGoogle Scholar
  120. 120.
    Vaughn KC, Debonte LR, Wilson KG et al (1980) Organelle alteration as a mechanism for maternal inheritance. Science 11(208):196–198.  https://doi.org/10.1126/science.208.4440.196 CrossRefGoogle Scholar
  121. 121.
    Sunderland N, Huang B (1985) Barley anther culture-the switch of programme and albinism. Hereditas 103(s3):27–40Google Scholar
  122. 122.
    Torp AM, Andersen SB (2009) Albinism in microspore culture. In: Touraev A, Forster BP, Jain SM (eds) Advances in haploid production in higher plants. Springer, Berlin, pp 155–160.  https://doi.org/10.1007/978-1-4020-8854-4_12 CrossRefGoogle Scholar
  123. 123.
    Caredda S, Doncoeur C, Devaux P, Sangwan RS, Clément C (2000) Plastid differentiation during androgenesis in albino and non-albino producing cultivars of barley (Hordeum vulgare L.). Sex Plant Reprod 13:95–104CrossRefGoogle Scholar
  124. 124.
    Miyamura S, Kuroiwa T, Nagata T (1987) Disappearance of plastid and mitochondria nucleoids during the formation of generative cells of higher plants revealed by fluorescent microscopy. Protoplasma 141:149–159CrossRefGoogle Scholar
  125. 125.
    Day A, Ellis THN (1984) Chloroplast DNA deletions associated with wheat plants regenerated from pollen: possible basis for maternal inheritance of chloroplasts. Cell 39:359–368PubMedCrossRefGoogle Scholar
  126. 126.
    Day A, Ellis THN (1985) Deleted forms of plastid DNA in albino plants from cereal anther culture. Curr Genet 9:671–676CrossRefGoogle Scholar
  127. 127.
    Hofinger BJ, Ankele E, Gülly C, Heberle-Bors E, Pfosser MF (2001) The involvement of the plastid genome in albino plant regeneration from microspores in wheat. In: Bohanec B (ed) Biotechnological approaches for utilisation of gametic cells. COST 824 final meeting, bled, Slovenia, 1–5 Jul 2000, pp 215–228Google Scholar
  128. 128.
    Tuvesson IKD, Pedersen S, Andersen SB (1989) Nuclear genes affecting albinism in wheat (Triticum aestivum L.) anther culture. Theor Appl Genet 78:879–883PubMedCrossRefGoogle Scholar
  129. 129.
    Dunford R, Walden RM (1991) Plastid genome structure and plastid-related transcript levels in albino barley plants derived from anther culture. Curr Genet 20:339–347.  https://doi.org/10.1007/BF00318524 CrossRefPubMedGoogle Scholar
  130. 130.
    Zhou H, Konzak CF (1992) Genetic control of green plant regeneration from anther culture of wheat. Genome 35:957–961CrossRefGoogle Scholar
  131. 131.
    Ankele E, Heberle-Bors E, Pfosser MF, Hofinger BJ (2005) Searching for mechanisms leading to albino plant formation in cereals. Acta Physiol Plant 27(4B):651–664CrossRefGoogle Scholar
  132. 132.
    Nielsen NH, Andersen SU, Stougaard J et al (2015) Chromosomal regions associated with the in vitro culture response of wheat (Triticum aestivum L.) microspores. Plant Breed 134(2):55–263Google Scholar
  133. 133.
    Grosse BA, Deimling S, Geiger HH (1996) Mapping of genes for anther culture ability in rye by molecular markers. Vortr Pflanzen 1996:282–283Google Scholar
  134. 134.
    Chen X-W, Cistué L, Muñoz-Amatriaín M et al (2007) Genetic markers for doubled haploid response in barley. Euphytica 158:287–294.  https://doi.org/10.1007/s10681-006-9310-5 CrossRefGoogle Scholar
  135. 135.
    Muñoz-Amatriaín M, Castillo AM, Chen XW et al (2008) Identification and validation of QTLs for green plant percentage in barley (Hordeum vulgare L.) anther culture. Mol Breed 22:119–129.  https://doi.org/10.1007/s11032-008-9161-y CrossRefGoogle Scholar
  136. 136.
    González JM, Muñiz LM, Jouve N (2005) Mapping of QTLs for androgenetic response based on a molecular genetic map of × Triticosecale Wittmack. Genome Res 48:999–1009.  https://doi.org/10.1139/g05-064 CrossRefGoogle Scholar
  137. 137.
    Krzewska M, Czyczyło-Mysza I, Dubas E et al (2012) Quantitative trait loci associated with androgenic responsiveness in triticale (× Triticosecale Wittm.) anther culture. Plant Cell Rep 31(11):2099–2108.  https://doi.org/10.1007/s00299-012-1320-2 CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Yamagishi M, Otani M, Higashi M et al (1998) Chromosomal regions controlling anther culturability in rice (Oryza sativa L.). Euphytica 103:227–234CrossRefGoogle Scholar
  139. 139.
    Bolibok H, Rakoczy-Trojanowska M (2006) Genetic mapping of QTLs for tissue-culture response in plants. Euphytica 149:73–83CrossRefGoogle Scholar
  140. 140.
    Seldimirova OA, Kruglova NN (2015) Androclinic embryoidogenesis in vitro in cereals. Biol Bull Rev 5:156–165CrossRefGoogle Scholar
  141. 141.
    Muñoz-Amatriaín M, Svensson JT, Castillo AM et al (2009) Microspore embryogenesis: assignment of genes to embryo formation and green vs. albino plant production. Funct Integr Genom 9:311–323.  https://doi.org/10.1007/s10142-009-0113-3 CrossRefGoogle Scholar
  142. 142.
    Nakamura Y (2015) Biosynthesis of reserve starch. In: Nakamura Y (ed) Starch. Springer, Tokyo, pp 161–209CrossRefGoogle Scholar
  143. 143.
    Pfannschmidt T (2010) Plastidial retrograde signalling – a true ‘plastid factor’ or just metabolite signatures? Trends Plant Sci 15:427–435PubMedCrossRefGoogle Scholar
  144. 144.
    Kobayashi Y, Kanesaki Y, Tanaka A et al (2009) Tetrapyrrole signal as a cell-cycle coordinator from organelle to nuclear DNA replication in plant cells. Proc Natl Acad Sci U S A 106:803–807PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Tiller N, Bock R (2014) The translational apparatus of plastids and its role in plant development. Mol Plant 7:1105–1120.  https://doi.org/10.1093/mp/ssu022 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature 2021

Authors and Affiliations

  1. 1.The Franciszek Górski Institute of Plant PhysiologyPolish Academy of SciencesKrakówPoland
  2. 2.Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural SciencesUniversity of SilesiaKatowicePoland

Personalised recommendations