Skip to main content

Suborganellar Localization of Mitochondrial Proteins and Transcripts in Human Cells

Part of the Methods in Molecular Biology book series (MIMB,volume 2277)

Abstract

Mitochondria have complex ultrastructure which includes continuous subcompartments, such as matrix, intermembrane space, and two membranes, as well as focal structures, such as nucleoids, RNA granules, and mitoribosomes. Comprehensive studies of the spatial distribution of proteins and RNAs inside the mitochondria are necessary to understand organellar gene expression processes and macromolecule targeting pathways. Here we give examples of distribution analysis of mitochondrial proteins and transcripts by conventional microscopy and the super-resolution technique 3D STORM. We provide detailed protocols and discuss limitations of immunolabeling of mitochondrial proteins and newly synthesized mitochondrial RNAs by bromouridine incorporation and single-molecule RNA FISH in hepatocarcinoma cells.

Key words

  • Confocal microscopy
  • Colocalization analysis
  • RNA in situ hybridization
  • Immunolabeling
  • 3D STORM
  • Submitochondrial ultrastructure

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-1270-5_11
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-1270-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Change history

  • 28 October 2021

    Correction to: Volkmar Weissig and Marvin Edeas (ed.), Mitochondrial Medicine: Volume 3: Manipulating Mitochondria and Disease-Specific Approaches, Methods in Molecular Biology, vol. 2277 https://doi.org/10.1007/978-1-0716-1270-5

References

  1. Frey TG, Mannella CA (2000) The internal structure of mitochondria. Trends Biochem Sci 25(7):319–324. https://doi.org/10.1016/s0968-0004(00)01609-1

    CAS  CrossRef  PubMed  Google Scholar 

  2. Jourdain AA, Boehm E, Maundrell K, Martinou JC (2016) Mitochondrial RNA granules: Compartmentalizing mitochondrial gene expression. J Cell Biol 212(6):611–614. https://doi.org/10.1083/jcb.201507125

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  3. Pearce SF, Rebelo-Guiomar P, D'Souza AR, Powell CA, Van Haute L, Minczuk M (2017) Regulation of mammalian mitochondrial gene expression: recent advances. Trends Biochem Sci 42(8):625–639. https://doi.org/10.1016/j.tibs.2017.02.003

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  4. Jakobs S (2006) High resolution imaging of live mitochondria. Biochim Biophys Acta 1763(5–6):561–575. https://doi.org/10.1016/j.bbamcr.2006.04.004

    CAS  CrossRef  PubMed  Google Scholar 

  5. Opstad IS, Wolfson DL, Øie CI, Ahluwalia BS (2018) Multi-color imaging of sub-mitochondrial structures in living cells using structured illumination microscopy. Nanophotonics 7:935. https://doi.org/10.1515/nanoph-2017-0112

    CAS  CrossRef  Google Scholar 

  6. Jakobs S, Wurm CA (2014) Super-resolution microscopy of mitochondria. Curr Opin Chem Biol 20:9–15. https://doi.org/10.1016/j.cbpa.2014.03.019

    CAS  CrossRef  PubMed  Google Scholar 

  7. Ma B, Tanese N (2017) RNA-directed FISH and immunostaining. In: Liehr T (ed) Fluorescence in situ hybridization (FISH): application guide. Springer, Berlin, pp 327–335. https://doi.org/10.1007/978-3-662-52959-1_34

    CrossRef  Google Scholar 

  8. Kukat C, Wurm CA, Spahr H, Falkenberg M, Larsson NG, Jakobs S (2011) Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA. Proc Natl Acad Sci U S A 108(33):13534–13539. https://doi.org/10.1073/pnas.1109263108

    CrossRef  PubMed  PubMed Central  Google Scholar 

  9. Silva Ramos E, Motori E, Bruser C, Kuhl I, Yeroslaviz A, Ruzzenente B, Kauppila JHK, Busch JD, Hultenby K, Habermann BH, Jakobs S, Larsson NG, Mourier A (2019) Mitochondrial fusion is required for regulation of mitochondrial DNA replication. PLoS Genet 15(6):e1008085. https://doi.org/10.1371/journal.pgen.1008085

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  10. Huang B, Jones SA, Brandenburg B, Zhuang X (2008) Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nat Methods 5(12):1047–1052. https://doi.org/10.1038/nmeth.1274

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  11. Stoldt S, Wenzel D, Kehrein K, Riedel D, Ott M, Jakobs S (2018) Spatial orchestration of mitochondrial translation and OXPHOS complex assembly. Nat Cell Biol 20(5):528–534. https://doi.org/10.1038/s41556-018-0090-7

    CAS  CrossRef  PubMed  Google Scholar 

  12. Stephan T, Roesch A, Riedel D, Jakobs S (2019) Live-cell STED nanoscopy of mitochondrial cristae. Sci Rep 9(1):12419. https://doi.org/10.1038/s41598-019-48838-2

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  13. Jans DC, Wurm CA, Riedel D, Wenzel D, Stagge F, Deckers M, Rehling P, Jakobs S (2013) STED super-resolution microscopy reveals an array of MINOS clusters along human mitochondria. Proc Natl Acad Sci U S A 110(22):8936. https://doi.org/10.1073/pnas.1301820110

    CrossRef  PubMed  PubMed Central  Google Scholar 

  14. Iborra FJ, Kimura H, Cook PR (2004) The functional organization of mitochondrial genomes in human cells. BMC Biol 2:9. https://doi.org/10.1186/1741-7007-2-9

    CrossRef  PubMed  PubMed Central  Google Scholar 

  15. Battich N, Stoeger T, Pelkmans L (2013) Image-based transcriptomics in thousands of single human cells at single-molecule resolution. Nat Methods 10(11):1127–1133. https://doi.org/10.1038/nmeth.2657

    CAS  CrossRef  PubMed  Google Scholar 

  16. Kotrys AV, Szczesny RJ (2019) Mitochondrial gene expression and beyond-novel aspects of cellular physiology. Cells 9(1):17. https://doi.org/10.3390/cells9010017

  17. Jeandard D, Smirnova A, Tarassov I, Barrey E, Smirnov A, Entelis N (2019) Import of non-coding RNAs into human mitochondria: a critical review and emerging approaches. Cells 8(3):286. https://doi.org/10.3390/cells8030286

  18. Summer S, Smirnova A, Gabriele A, Toth U, Fasemore AM, Forstner KU, Kuhn L, Chicher J, Hammann P, Mitulovic G, Entelis N, Tarassov I, Rossmanith W, Smirnov A (2020) YBEY is an essential biogenesis factor for mitochondrial ribosomes. Nucleic Acids Res 48(17):9762–9786. https://doi.org/10.1093/nar/gkaa148

  19. Brown A, Amunts A, Bai X-C, Sugimoto Y, Edwards PC, Murshudov G, Scheres SHW, Ramakrishnan V (2014) Structure of the large ribosomal subunit from human mitochondria. Science 346(6210):718–722. https://doi.org/10.1126/science.1258026

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  20. Rackham O, Shearwood AM, Mercer TR, Davies SM, Mattick JS, Filipovska A (2011) Long noncoding RNAs are generated from the mitochondrial genome and regulated by nuclear-encoded proteins. RNA 17(12):2085–2093. https://doi.org/10.1261/rna.029405.111

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  21. Dhir A, Dhir S, Borowski LS, Jimenez L, Teitell M, Rotig A, Crow YJ, Rice GI, Duffy D, Tamby C, Nojima T, Munnich A, Schiff M, de Almeida CR, Rehwinkel J, Dziembowski A, Szczesny RJ, Proudfoot NJ (2018) Mitochondrial double-stranded RNA triggers antiviral signalling in humans. Nature 560(7717):238–242. https://doi.org/10.1038/s41586-018-0363-0

    CAS  CrossRef  PubMed Central  Google Scholar 

  22. Rizk A, Paul G, Incardona P, Bugarski M, Mansouri M, Niemann A, Ziegler U, Berger P, Sbalzarini IF (2014) Segmentation and quantification of subcellular structures in fluorescence microscopy images using Squassh. Nat Protoc 9(3):586–596. https://doi.org/10.1038/nprot.2014.037

    CAS  CrossRef  PubMed  Google Scholar 

  23. Glushonkov O, Réal E, Boutant E, Mély Y, Didier P (2018) Optimized protocol for combined PALM-dSTORM imaging. Sci Rep 8(1):8749. https://doi.org/10.1038/s41598-018-27059-z

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  24. Ovesný M, Křížek P, Borkovec J, Svindrych Z, Hagen GM (2014) ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics 30(16):2389–2390. https://doi.org/10.1093/bioinformatics/btu202

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the CNRS (Centre National de Recherche Scientifique); the University of Strasbourg; the IMCBio consortium, the Labex MitoCross (ANR-11-LABX-0057_MITOCROSS) of the National Programme “Investissements d’Avenir” and the Idex UNISTRA. YM is grateful to the Institut Universitaire de France (IUF) for support and providing additional time to be dedicated to research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Tarassov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Smirnova, A., Richert, L., Smirnov, A., Mély, Y., Tarassov, I. (2021). Suborganellar Localization of Mitochondrial Proteins and Transcripts in Human Cells. In: Weissig, V., Edeas, M. (eds) Mitochondrial Medicine. Methods in Molecular Biology, vol 2277. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1270-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1270-5_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1269-9

  • Online ISBN: 978-1-0716-1270-5

  • eBook Packages: Springer Protocols