Skip to main content

Exploiting Water Dynamics for Pharmacophore Screening

  • Protocol
  • First Online:
Protein-Ligand Interactions and Drug Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2266))

  • 1961 Accesses

Abstract

Three-dimensional pharmacophore models have been proven extremely valuable in exploring novel chemical space through virtual screening. However, traditional pharmacophore-based approaches need ligand information and rely on static snapshots of highly dynamic systems. In this chapter, we describe PyRod, a novel tool to generate three-dimensional pharmacophore models based on water traces of a molecular dynamics simulation of an apo-protein.

The protocol described herein was successfully applied for the discovery of novel drug-like inhibitors of West Nile virus NS2B-NS3 protease. By using this recent example, we highlight the key steps of the generation and validation of PyRod-derived pharmacophore models and their application for virtual screening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seidel T, Ibis G, Bendix F et al (2010) Strategies for 3D pharmacophore-based virtual screening. Drug Discov Today Technol 7:e221–e228

    Article  CAS  Google Scholar 

  2. Schaller D, Šribar D, Noonan T et al (2020) Next generation 3D pharmacophore modeling. Wiley Interdiscip Rev Comput Mol Sci 10. https://doi.org/10.1002/wcms.1468

  3. Hessler G, Baringhaus K-H (2010) The scaffold hopping potential of pharmacophores. Drug Discov Today Technol 7:e263–e269

    Article  CAS  Google Scholar 

  4. Wolber G, Langer T (2005) LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J Chem Inf Model 45:160–169

    Article  CAS  Google Scholar 

  5. Ottanà R, Paoli P, Lori G et al (2019) Design and evaluation of non-carboxylate 5-arylidene-2-thioxo-4-imidazolidinones as novel non-competitive inhibitors of protein tyrosine phosphatase 1B. Bioorg Chem 92:103211

    Article  Google Scholar 

  6. Schaller D, Hagenow S, Stark H et al (2019) Ligand-guided homology modeling drives identification of novel histamine H3 receptor ligands. PLoS One 14:e0218820

    Article  CAS  Google Scholar 

  7. Grabowski M, Murgueitio MS, Bermudez M et al (2020) The novel small-molecule antagonist MMG-11 preferentially inhibits TLR2/1 signaling. Biochem Pharmacol 171:113687

    Article  CAS  Google Scholar 

  8. Šribar D, Grabowski M, Murgueitio MS et al (2019) Identification and characterization of a novel chemotype for human TLR8 inhibitors. Eur J Med Chem 179:744–752

    Article  Google Scholar 

  9. Murgueitio MS, Bermudez M, Mortier J et al (2012) In silico virtual screening approaches for anti-viral drug discovery. Drug Discov Today Technol 9:e219–e225

    Article  CAS  Google Scholar 

  10. Mortier J, Dhakal P, Volkamer A (2018) Truly target-focused pharmacophore modeling: A novel tool for mapping intermolecular surfaces. 23:1959

    Google Scholar 

  11. Baroni M, Cruciani G, Sciabola S et al (2007) A common reference framework for analyzing/comparing proteins and ligands. Fingerprints for ligands and proteins (FLAP): theory and application. J Chem Inf Model 47:279–294

    Article  CAS  Google Scholar 

  12. Salam NK, Nuti R, Sherman W (2009) Novel method for generating structure-based pharmacophores using energetic analysis. J Chem Inf Model 49:2356–2368

    Article  CAS  Google Scholar 

  13. Mortier J, Rakers C, Bermudez M et al (2015) The impact of molecular dynamics on drug design: applications for the characterization of ligand-macromolecule complexes. Drug Discov Today 20:686–702

    Article  CAS  Google Scholar 

  14. Schaller D, Pach S, Wolber G (2019) PyRod: tracing water molecules in molecular dynamics simulations. J Chem Inf Model 59:2818–2829

    Article  CAS  Google Scholar 

  15. Pach S, Sarter TM, Yousef R et al (2020) Catching a moving target: comparative modeling of flaviviral NS2B-NS3 reveals small molecule zika protease inhibitors. ACS Med Chem Lett doi 11:514. https://doi.org/10.1021/acsmedchemlett.9b00629

    Article  CAS  Google Scholar 

  16. Wolber G, Dornhofer AA, Langer T (2006) Efficient overlay of small organic molecules using 3D pharmacophores. J Comput Aided Mol Des 20:773–788

    Article  CAS  Google Scholar 

  17. Sadowski J, Gasteiger J, Klebe G (1994) Comparison of automatic three-dimensional model builders using 639 x-ray structures. J Chem Inf Model 34:1000–1008

    CAS  Google Scholar 

  18. Schrödinger LLC (2018) Schrödinger Release 2018-3. Maestro 11(7)

    Google Scholar 

  19. Schrödinger LLC (2018) Schrödinger Release 2018-3. Desmond 5(5)

    Google Scholar 

  20. Chemical Computing Group Inc. (2018), Molecular operating environment

    Google Scholar 

  21. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  22. Berman HM (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  Google Scholar 

  23. Wlodawer A, Minor W, Dauter Z et al (2008) Protein crystallography for non-crystallographers, or how to get the best (but not more) from published macromolecular structures. FEBS J 275:1–21

    Article  CAS  Google Scholar 

  24. Cavasotto CN, Phatak SS (2009) Homology modeling in drug discovery: current trends and applications. Drug Discov Today 14:676–683

    Article  CAS  Google Scholar 

  25. Gaulton A, Hersey A, Nowotka M et al (2017) The ChEMBL database in 2017. Nucleic Acids Res 45:D945–D954

    Article  CAS  Google Scholar 

  26. Mysinger MM, Carchia M, Irwin JJ et al (2012) Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem 55:6582–6594

    Article  CAS  Google Scholar 

  27. Nitsche C, Zhang L, Weigel LF et al (2017) Peptide-boronic acid inhibitors of flaviviral proteases: medicinal chemistry and structural biology. J Med Chem 60:511–516

    Article  CAS  Google Scholar 

  28. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  29. Chappell KJ, Nall TA, Stoermer MJ et al (2005) Site-directed mutagenesis and kinetic studies of the west nile virus NS3 protease identify key enzyme-substrate interactions. J Biol Chem 280:2896–2903

    Article  CAS  Google Scholar 

  30. Schaller D, Hagenow S, Alpert G et al (2017) Systematic data mining reveals synergistic H3R/MCHR1 ligands. ACS Med Chem Lett 8:648–653

    Article  CAS  Google Scholar 

  31. Riniker S (2018) Fixed-charge atomistic force fields for molecular dynamics simulations in the condensed phase: an overview. J Chem Inf Model 58:565–578

    Article  CAS  Google Scholar 

  32. Koes DR, Camacho CJ (2011) Pharmer: efficient and exact pharmacophore search. J Chem Inf Model 51:1307–1314

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Wolber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schaller, D., Pach, S., Bermudez, M., Wolber, G. (2021). Exploiting Water Dynamics for Pharmacophore Screening. In: Ballante, F. (eds) Protein-Ligand Interactions and Drug Design. Methods in Molecular Biology, vol 2266. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1209-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1209-5_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1208-8

  • Online ISBN: 978-1-0716-1209-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics