Skip to main content

Effective Mapping by Sequencing to Isolate Causal Mutations in the Tomato Genome

Part of the Methods in Molecular Biology book series (MIMB,volume 2264)

Abstract

Forward genetic analysis remains as one of the most powerful tools for assessing gene functions, although the identification of the causal mutation responsible for a given phenotype has been a tedious and time-consuming task until recently. Advances in deep sequencing technologies have provided new approaches for the exploitation of natural and artificially induced genetic diversity, thus accelerating the discovery of novel allelic variants. In this chapter, a mapping-by-sequencing forward genetics approach is described to identify causal mutations in tomato (Solanum lycopersicum L.), a major crop species that is also a model species for plant biology and breeding.

Key words

  • Mapping-by-sequencing
  • Mutations
  • Gene discovery
  • Tomato
  • Solanum lycopersicum

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-1201-9_7
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-1201-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Meissner R, Jacobson Y, Melamed S, Levyatuv S, Shalev G, Ashri A et al (1997) A new model system for tomato genetics. Plant J 12:1465–1472

    CAS  CrossRef  Google Scholar 

  2. Lozano R, Giménez E, Cara B, Capel J, Angosto T (2009) Genetic analysis of reproductive development in tomato. Int J Dev Biol 53:1635–1648

    CAS  CrossRef  PubMed  Google Scholar 

  3. Ranjan A, Ichihashi Y, Sinha NR (2012) The tomato genome: implications for plant breeding, genomics and evolution. Genome Biol 13:167

    CrossRef  PubMed  PubMed Central  Google Scholar 

  4. Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    CrossRef  Google Scholar 

  5. Causse M, Desplat N, Pascual L, Le Paslier MC, Sauvage C, Bauchet G et al (2013) Whole genome resequencing in tomato reveals variation associated with introgression and breeding events. BMC Genomics 14:791

    CrossRef  PubMed  PubMed Central  Google Scholar 

  6. Tomato Genome Sequencing Consortium (2014) Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole-genome sequencing. Plant J 80:136–148

    CrossRef  Google Scholar 

  7. Lin T, Zhu G, Zhang J, Xu X, Yu Q, Zheng Z et al (2014) Genomic analyses provide insights into the history of tomato breeding. Nat Genet 46:1220–1226

    CAS  CrossRef  PubMed  Google Scholar 

  8. Tieman D, Zhu G, Resende MF Jr, Lin T, Nguyen C, Bies D et al (2017) A chemical genetic roadmap to improved tomato flavor. Science 355:391–394

    CAS  CrossRef  PubMed  Google Scholar 

  9. Zhu G, Wang S, Huang Z, Zhang S, Liao Q, Zhang C et al (2018) Rewiring of the fruit metabolome in tomato breeding. Cell 172:249–261.e12

    CAS  CrossRef  PubMed  Google Scholar 

  10. Gao L, Gonda I, Sun H, Ma Q, Bao K, Tieman DM et al (2019) The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nat Genet 51:1044–1051

    CAS  CrossRef  PubMed  Google Scholar 

  11. Razifard H, Ramos A, Della Valle AL, Bodary C, Goetz E, Manser EJ et al (2020) Genomic evidence for complex domestication history of the cultivated tomato in Latin America. Mol Biol Evol 37(4):1118–1132. https://doi.org/10.1093/molbev/msz297

    CrossRef  PubMed  PubMed Central  Google Scholar 

  12. Meissner R, Chague V, Zhu Q, Emmanuel E, Elkind Y, Levy AA (2000) A high throughput system for transposon tagging and promoter trapping in tomato. Plant J 38:861–872

    Google Scholar 

  13. Menda N, Semel Y, Peled D, Eshed Y, Zamir D (2004) In silico screening of a saturated mutation library of tomato. Plant J 38:861–872

    CAS  CrossRef  PubMed  Google Scholar 

  14. Carvalho RF, Campos ML, Pino LE, Crestana SL, Zsogon A, Lima JE (2011) Convergence of developmental mutants into a single tomato model system: ‘Micro-Tom’ as an effective toolkit for plant development research. Plant Methods 7:18

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  15. Just D, Garcia V, Fernandez L, Bres C, Mauxion J, Petit J et al (2013) Micro-Tom mutants for functional analysis of target genes and discovery of new alleles in tomato. Plant Biotechnol 30:225–231

    CAS  CrossRef  Google Scholar 

  16. Pérez-Martín F, Yuste-Lisbona FJ, Pineda B, Angarita-Díaz MP, García-Sogo B, Antón T et al (2017) A collection of enhancer trap insertional mutants for functional genomics in tomato. Plant Biotechnol J 15:1439–1452

    CrossRef  PubMed  PubMed Central  Google Scholar 

  17. Birkeland SR, Jin N, Ozdemir AC, Lyons RH Jr, Weisman LS, Wilson TE (2010) Discovery of mutations in Saccharomyces cerevisiae by pooled linkage analysis and whole-genome sequencing. Genetics 186:1127–1137

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  18. Sarin S, Prabhu S, O’Meara MM, Pe’er I, Hobert O (2008) Caenorhabditis elegans mutant allele identification by whole-genome sequencing. Nat Methods 5:865–867

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  19. Blumenstiel JP, Noll AC, Griffiths JA, Perera AG, Walton KN, Gilliland WD et al (2009) Identification of EMS-induced mutations in Drosophila melanogaster by whole-genome sequencing. Genetics 182:25–32

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  20. Cuperus JT, Montgomery TA, Fahlgren N, Burke RT, Townsend T, Sullivan CM et al (2010) Identification of MIR390a precursor processing-defective mutants in Arabidopsis by direct genome sequencing. Proc Natl Acad Sci U S A 107:466–471

    CAS  CrossRef  PubMed  Google Scholar 

  21. Schneeberger K (2014) Using next-generation sequencing to isolate mutant genes from forward genetic screens. Nat Rev Genet 15:662–676

    CAS  CrossRef  PubMed  Google Scholar 

  22. Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci U S A 88:9828–9832

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  23. Garcia V, Bres C, Just D, Fernandez L, Tai FW, Mauxion JP et al (2014) Rapid identification of causal mutations in tomato EMS populations via mapping-by-sequencing. Nat Protoc 11:2401–2418

    CrossRef  Google Scholar 

  24. Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: Version II. Plant Mol Biol Rep 1:19–21

    CAS  CrossRef  Google Scholar 

  25. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  26. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al (2009) 1000 genome project data processing subgroup, the sequence alignment/map (SAM) format and SAMtools. Bioinformatics 25:2078–2079

    CrossRef  PubMed  PubMed Central  Google Scholar 

  27. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C et al (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43:491–498

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  28. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  29. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from next-generation sequencing data. Nucleic Acids Res 38:e164

    CrossRef  PubMed  PubMed Central  Google Scholar 

  30. Yuste-Lisbona FJ, Fernández-Lozano A, Pineda B, Bretones S, Ortíz-Atienza A et al (2020) ENO regulates tomato fruit size through the floral meristem development network. Proc Natl Acad Sci U S A 117:8187–8195

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish Ministry of Economy and Competitiveness (grant AGL2015-64991-C3-1-R) and the BRESOV (breeding for resilient, efficient, and sustainable organic vegetable production) project. BRESOV project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 774244. J.M.J.-G received funding from ANR projects (ANR-17-ERC2-0013-01, ANR-18-CE92-0039-01, and ANR-17-CE20-0024-02). IJPB benefits from the support of Saclay Plant Sciences—SPS (ANR-17-EUR-0007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Lozano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Yuste-Lisbona, F.J., Jiménez-Gómez, J.M., Capel, C., Lozano, R. (2021). Effective Mapping by Sequencing to Isolate Causal Mutations in the Tomato Genome. In: Tripodi, P. (eds) Crop Breeding. Methods in Molecular Biology, vol 2264. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1201-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1201-9_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1200-2

  • Online ISBN: 978-1-0716-1201-9

  • eBook Packages: Springer Protocols