Meissner R, Jacobson Y, Melamed S, Levyatuv S, Shalev G, Ashri A et al (1997) A new model system for tomato genetics. Plant J 12:1465–1472
CAS
CrossRef
Google Scholar
Lozano R, Giménez E, Cara B, Capel J, Angosto T (2009) Genetic analysis of reproductive development in tomato. Int J Dev Biol 53:1635–1648
CAS
CrossRef
PubMed
Google Scholar
Ranjan A, Ichihashi Y, Sinha NR (2012) The tomato genome: implications for plant breeding, genomics and evolution. Genome Biol 13:167
CrossRef
PubMed
PubMed Central
Google Scholar
Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641
CrossRef
Google Scholar
Causse M, Desplat N, Pascual L, Le Paslier MC, Sauvage C, Bauchet G et al (2013) Whole genome resequencing in tomato reveals variation associated with introgression and breeding events. BMC Genomics 14:791
CrossRef
PubMed
PubMed Central
Google Scholar
Tomato Genome Sequencing Consortium (2014) Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole-genome sequencing. Plant J 80:136–148
CrossRef
Google Scholar
Lin T, Zhu G, Zhang J, Xu X, Yu Q, Zheng Z et al (2014) Genomic analyses provide insights into the history of tomato breeding. Nat Genet 46:1220–1226
CAS
CrossRef
PubMed
Google Scholar
Tieman D, Zhu G, Resende MF Jr, Lin T, Nguyen C, Bies D et al (2017) A chemical genetic roadmap to improved tomato flavor. Science 355:391–394
CAS
CrossRef
PubMed
Google Scholar
Zhu G, Wang S, Huang Z, Zhang S, Liao Q, Zhang C et al (2018) Rewiring of the fruit metabolome in tomato breeding. Cell 172:249–261.e12
CAS
CrossRef
PubMed
Google Scholar
Gao L, Gonda I, Sun H, Ma Q, Bao K, Tieman DM et al (2019) The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nat Genet 51:1044–1051
CAS
CrossRef
PubMed
Google Scholar
Razifard H, Ramos A, Della Valle AL, Bodary C, Goetz E, Manser EJ et al (2020) Genomic evidence for complex domestication history of the cultivated tomato in Latin America. Mol Biol Evol 37(4):1118–1132. https://doi.org/10.1093/molbev/msz297
CrossRef
PubMed
PubMed Central
Google Scholar
Meissner R, Chague V, Zhu Q, Emmanuel E, Elkind Y, Levy AA (2000) A high throughput system for transposon tagging and promoter trapping in tomato. Plant J 38:861–872
Google Scholar
Menda N, Semel Y, Peled D, Eshed Y, Zamir D (2004) In silico screening of a saturated mutation library of tomato. Plant J 38:861–872
CAS
CrossRef
PubMed
Google Scholar
Carvalho RF, Campos ML, Pino LE, Crestana SL, Zsogon A, Lima JE (2011) Convergence of developmental mutants into a single tomato model system: ‘Micro-Tom’ as an effective toolkit for plant development research. Plant Methods 7:18
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Just D, Garcia V, Fernandez L, Bres C, Mauxion J, Petit J et al (2013) Micro-Tom mutants for functional analysis of target genes and discovery of new alleles in tomato. Plant Biotechnol 30:225–231
CAS
CrossRef
Google Scholar
Pérez-Martín F, Yuste-Lisbona FJ, Pineda B, Angarita-Díaz MP, García-Sogo B, Antón T et al (2017) A collection of enhancer trap insertional mutants for functional genomics in tomato. Plant Biotechnol J 15:1439–1452
CrossRef
PubMed
PubMed Central
Google Scholar
Birkeland SR, Jin N, Ozdemir AC, Lyons RH Jr, Weisman LS, Wilson TE (2010) Discovery of mutations in Saccharomyces cerevisiae by pooled linkage analysis and whole-genome sequencing. Genetics 186:1127–1137
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Sarin S, Prabhu S, O’Meara MM, Pe’er I, Hobert O (2008) Caenorhabditis elegans mutant allele identification by whole-genome sequencing. Nat Methods 5:865–867
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Blumenstiel JP, Noll AC, Griffiths JA, Perera AG, Walton KN, Gilliland WD et al (2009) Identification of EMS-induced mutations in Drosophila melanogaster by whole-genome sequencing. Genetics 182:25–32
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Cuperus JT, Montgomery TA, Fahlgren N, Burke RT, Townsend T, Sullivan CM et al (2010) Identification of MIR390a precursor processing-defective mutants in Arabidopsis by direct genome sequencing. Proc Natl Acad Sci U S A 107:466–471
CAS
CrossRef
PubMed
Google Scholar
Schneeberger K (2014) Using next-generation sequencing to isolate mutant genes from forward genetic screens. Nat Rev Genet 15:662–676
CAS
CrossRef
PubMed
Google Scholar
Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci U S A 88:9828–9832
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Garcia V, Bres C, Just D, Fernandez L, Tai FW, Mauxion JP et al (2014) Rapid identification of causal mutations in tomato EMS populations via mapping-by-sequencing. Nat Protoc 11:2401–2418
CrossRef
Google Scholar
Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: Version II. Plant Mol Biol Rep 1:19–21
CAS
CrossRef
Google Scholar
Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al (2009) 1000 genome project data processing subgroup, the sequence alignment/map (SAM) format and SAMtools. Bioinformatics 25:2078–2079
CrossRef
PubMed
PubMed Central
Google Scholar
DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C et al (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43:491–498
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
Google Scholar
Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from next-generation sequencing data. Nucleic Acids Res 38:e164
CrossRef
PubMed
PubMed Central
Google Scholar
Yuste-Lisbona FJ, Fernández-Lozano A, Pineda B, Bretones S, Ortíz-Atienza A et al (2020) ENO regulates tomato fruit size through the floral meristem development network. Proc Natl Acad Sci U S A 117:8187–8195
CAS
CrossRef
PubMed
PubMed Central
Google Scholar