Skip to main content

uORF-seqr: A Machine Learning-Based Approach to the Identification of Upstream Open Reading Frames in Yeast

  • Protocol
  • First Online:
Ribosome Profiling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2252))

Abstract

The identification of upstream open reading frames (uORFs) using ribosome profiling data is complicated by several factors such as the noise inherent to the procedure, the substantial increase in potential translation initiation sites (and false positives) when one includes non-canonical start codons, and the paucity of molecularly validated uORFs. Here we present uORF-seqr, a novel machine learning algorithm that uses ribosome profiling data, in conjunction with RNA-seq data, as well as transcript aware genome annotation files to identify statistically significant AUG and near-cognate codon uORFs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hinnebusch AG, Ivanov IP, Sonenberg N (2016) Translational control by 5′-untranslated regions of eukaryotic mRNAs. Science 352(6292):1413–1416. https://doi.org/10.1126/science.aad9868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kozak M (1989) The scanning model for translation: an update. J Cell Biol 108(2):229–241. https://doi.org/10.1083/jcb.108.2.229

    Article  CAS  PubMed  Google Scholar 

  3. Hinnebusch AG, Jackson BM, Mueller PP (1988) Evidence for regulation of reinitiation in translational control of GCN4 mRNA. Proc Natl Acad Sci USA 85(19):7279–7283. https://doi.org/10.1073/pnas.85.19.7279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hinnebusch AG (2005) Translational regulation of GCN4 and the general amino acid control of yeast. Annu Rev Microbiol 59:407–450. https://doi.org/10.1146/annurev.micro.59.031805.133833

    Article  CAS  PubMed  Google Scholar 

  5. Gunišová S, Beznosková P, Mohammad MP, Vlčková V, Valášek LS (2016) In-depth analysis of cis-determinants that either promote or inhibit reinitiation on GCN4 mRNA after translation of its four short uORFs. RNA 22(4):542–558. https://doi.org/10.1261/rna.055046.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mohammad MP, Munzarová Pondelícková V, Zeman J, Gunišová S, Valášek LS (2017) In vivo evidence that eIF3 stays bound to ribosomes elongating and terminating on short upstream ORFs to promote reinitiation. Nucleic Acids Res 45(5):2658–2674. https://doi.org/10.1093/nar/gkx049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lin Y, May GE, Kready H, Nazzaro L, Mao M, Spealman P et al (2019) Impacts of uORF codon identity and position on translation regulation. Nucleic Acids Res 47(17):9358–9367. https://doi.org/10.1093/nar/gkz681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zitomer RS, Walthall DA, Rymond BC, Hollenberg CP (1984) Saccharomyces cerevisiae ribosomes recognize non-AUG initiation codons. Mol Cell Biol 4(7):1191–1197. https://doi.org/10.1128/mcb.4.7.1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Clements JM, Laz TM, Sherman F (1988) Efficiency of translation initiation by non-AUG codons in Saccharomyces cerevisiae. Mol Cell Biol 8(10):4533–4536. https://doi.org/10.1128/mcb.8.10.4533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Peabody DS (1989) Translation initiation at non-AUG triplets in mammalian cells. J Biol Chem 264(9):5031–5035. PMID: 2538469

    Article  CAS  PubMed  Google Scholar 

  11. Schwab SR, Shugart JA, Horng T, Malarkannan S, Shastri N (2004) Unanticipated antigens: translation initiation at CUG with leucine. PLoS Biol 2(11):e366. https://doi.org/10.1371/journal.pbio.0020366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Starck SR, Jiang V, Pavon-Eternod M, Prasad S, McCarthy B, Pan T et al (2012) Leucine-tRNA initiates at CUG start codons for protein synthesis and presentation by MHC class I. Science 336(6089):1719–1723. https://doi.org/10.1126/science.1220270

    Article  CAS  PubMed  Google Scholar 

  13. Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324(5924):218–223. https://doi.org/10.1126/science.1168978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brar GA, Yassour M, Friedman N, Regev A, Ingolia NT, Weissman JS (2012) High-resolution view of the yeast meiotic program revealed by ribosome profiling. Science 335(6068):552–557. https://doi.org/10.1126/science.1215110

    Article  CAS  PubMed  Google Scholar 

  15. Gerashchenko MV, Lobanov AV, Gladyshev VN (2012) Genome-wide ribosome profiling reveals complex translational regulation in response to oxidative stress. Proc Natl Acad Sci U S A 109(43):17394–17399. https://doi.org/10.1073/pnas.1120799109

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sheikh MS, Fornace AJ Jr (1999) Regulation of translation initiation following stress. Oncogene 18(45):6121–6128. doi:https://doi.org/10.1038/sj.onc.1203131

  17. Hinnebusch AG, Lorsch JR (2012) The mechanism of eukaryotic translation initiation: new insights and challenges. Cold Spring Harb Perspect Biol 4(10). https://doi.org/10.1101/cshperspect.a011544

  18. Liu B, Qian S-B (2014) Translational reprogramming in cellular stress response. Wiley Interdiscip Rev RNA 5:301–305. https://doi.org/10.1002/wrna.1212

    Article  CAS  PubMed  Google Scholar 

  19. Vaidyanathan PP, Zinshteyn B, Thompson MK, Gilbert WV (2014) Protein kinase A regulates gene-specific translational adaptation in differentiating yeast. RNA 20(6):912–922. https://doi.org/10.1261/rna.044552.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kearse MG, Wilusz JE (2017) Non-AUG translation: a new start for protein synthesis in eukaryotes. Genes Dev 31(17):1717–1731. https://doi.org/10.1101/gad.305250.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chengguang H, Sabatini P, Brandi L, Giuliodori AM, Pon CL, Gualerzi CO (2017) Ribosomal selection of mRNAs with degenerate initiation triplets. Nucleic Acids Res 45(12):7309–7325. https://doi.org/10.1093/nar/gkx472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ingolia NT, Lareau LF, Weissman JS (2011) Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147(4):789–802. https://doi.org/10.1016/j.cell.2011.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Andreev DE, O’Connor PBF, Loughran G, Dmitriev SE, Baranov PV, Shatsky IN (2017) Insights into the mechanisms of eukaryotic translation gained with ribosome profiling. Nucleic Acids Res 45(2):513–526. https://doi.org/10.1093/nar/gkw1190

    Article  CAS  PubMed  Google Scholar 

  24. Lee S, Liu B, Lee S, Huang S-X, Shen B, Qian S-B (2012) Global mapping of translation initiation sites in mammalian cells at single-nucleotide resolution. Proc Natl Acad Sci USA 109((37):E2424–E2432. https://doi.org/10.1073/pnas.1207846109

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sharma P, Nilges BS, Wu J, Leidel SA (2019) The translation inhibitor cycloheximide affects ribosome profiling data in a species-specific manner. bioRxiv:746255. https://doi.org/10.1101/746255

  26. Hussmann JA, Patchett S, Johnson A, Sawyer S, Press WH (2015) Understanding biases in ribosome profiling experiments reveals signatures of translation dynamics in yeast. PLoS Genet 11(12):e1005732. https://doi.org/10.1371/journal.pgen.1005732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Spealman P, Naik AW, May GE, Kuersten S, Freeberg L, Murphy RF et al (2018) Conserved non-AUG uORFs revealed by a novel regression analysis of ribosome profiling data. Genome Res 28(2):214–222. https://doi.org/10.1101/gr.221507.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fields AP, Rodriguez EH, Jovanovic M, Stern-Ginossar N, Haas BJ, Mertins P, Raychowdhury R, Hacohen N, Carr SA, Ingolia NT, Regev A, Weissman JS (2015) A regression-based analysis of ribosome-profiling data reveals a conserved complexity to mammalian translation. Mol Cell 60:816–827. https://doi.org/10.1016/j.molcel.2015.11.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Calviello L, Mukherjee N, Wyler E, Zauber H, Hirsekorn A, Selbach M, Landthaler M, Obermayer B, Ohler U (2016) Detecting actively translated open reading frames in ribosome profiling data. Nat Methods 13:165–170. https://doi.org/10.1038/nmeth.3688

    Article  CAS  PubMed  Google Scholar 

  30. Xiao Z, Huang R, Xing X, Chen Y, Deng H, Yang X (2018) De novo annotation and characterization of the translatome with ribosome profiling data. Nucleic Acids Res 46:e61. https://doi.org/10.1093/nar/gky179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Panse VG, Johnson AW (2010) Maturation of eukaryotic ribosomes: acquisition of functionality. Trends Biochem Sci 35:260–266. https://doi.org/10.1016/j.tibs.2010.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Karbstein K (2013) Quality control mechanisms during ribosome maturation. Trends Cell Biol 23:242–250. https://doi.org/10.1016/j.tcb.2013.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hershey JWB, Mathews MB, Sonenberg N (1996) Translational control. Cold Spring Harbor Laboratory

    Google Scholar 

  34. Wethmar K (2014) The regulatory potential of upstream open reading frames in eukaryotic gene expression. Wiley Interdiscip Rev RNA 5(6):765–778. https://doi.org/10.1002/wrna.1245

    Article  CAS  PubMed  Google Scholar 

  35. Spealman P, Wang H, May G, Kingsford C, McManus CJ (2016) Exploring ribosome positioning on translating transcripts with ribosome profiling. Methods Mol Biol 1358:71–97. https://doi.org/10.1007/978-1-4939-3067-8_5

    Article  CAS  PubMed  Google Scholar 

  36. Legendre R, Baudin-Baillieu A, Hatin I, Namy O (2015) RiboTools: a Galaxy toolbox for qualitative ribosome profiling analysis. Bioinformatics 31(15):2586–2588. https://doi.org/10.1093/bioinformatics/btv174

    Article  CAS  PubMed  Google Scholar 

  37. Wang H, Kingsford C, McManus CJ (2018) Using the Ribodeblur pipeline to recover A-sites from yeast ribosome profiling data. Methods 137:67–70. https://doi.org/10.1016/j.ymeth.2018.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lauria F, Tebaldi T, Bernabò P, Groen EJN, Gillingwater TH, Viero G (2018) riboWaltz: Optimization of ribosome P-site positioning in ribosome profiling data. PLoS Comput Biol 14(8):e1006169. https://doi.org/10.1371/journal.pcbi.1006169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 29:15–21. https://doi.org/10.1093/bioinformatics/bts635

    Article  CAS  PubMed  Google Scholar 

  40. Python 2.7 (2010). https://www.python.org/downloads/. Accessed 9 April 2020

  41. R 3.2.3 (2015). https://cran.r-project.org/. Accessed 9 April 2020

  42. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Git 2.7 (2016). https://git-scm.com/downloads. Accessed 9 April 2020

  44. Pip 9 (2016). https://pip.pypa.io/en/stable/. Accessed 9 April 2020

  45. TkInter (2016). https://wiki.python.org/moin/TkInter. Accessed 9 April 2020

  46. NumPy (2016). https://numpy.org/. Accessed 9 April 2020

  47. Mee Young Park, Trevor Hastie (2018). Package ‘glmpath’. https://cran.r-project.org/web/packages/glmpath/glmpath.pdf. Accessed 9 April 2020

  48. Rpy2 (2016). https://rpy2.github.io/. Accessed 9 April 2020

  49. Seabold S, Perktold J (2010) Statsmodels: econometric and statistical modeling with Python. In: Proceedings of the 9th Python in Science Conference. SciPy, pp 92–96. https://doi.org/10.25080/Majora-92bf1922-011

    Chapter  Google Scholar 

  50. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V et al (2011) Scikit-learn: Machine learning in Python. J Mach Learn Res 12:2825–2830

    Google Scholar 

  51. Dale R. (2013). https://pythonhosted.org/gffutils/. Accessed 9 April 2020

  52. Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 9:90–95. https://doi.org/10.1109/MCSE.2007.55

    Article  Google Scholar 

  53. Jones, E., Oliphant, T., Peterson, P., et al. (2001) SciPy: open source scientific tools for Python. http://www.scipy.org/. Accessed 9 April 2020

  54. Hamilton R, Watanabe CK, de Boer HA (1987) Compilation and comparison of the sequence context around the AUG start codons in Saccharomyces cerevisiae mRNAs. Nucleic Acids Res 15(8):3581–3593. https://doi.org/10.1093/nar/15.8.3581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wethmar K, Smink JJ, Leutz A (2010) Upstream open reading frames: molecular switches in (patho)physiology. Bioessays 32(10):885–893. https://doi.org/10.1002/bies.201000037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Strubin M, Long EO, Mach B (1986) Two forms of the Ia antigen-associated invariant chain result from alternative initiations at two in-phase AUGs. Cell 47(4):619–625. https://doi.org/10.1016/0092-8674(86)90626-4

    Article  CAS  PubMed  Google Scholar 

  57. Tang H-L, Yeh L-S, Chen N-K, Ripmaster T, Schimmel P, Wang C-C (2004) Translation of a yeast mitochondrial tRNA synthetase initiated at redundant non-AUG codons. J Biol Chem 279(48):49656–49663. https://doi.org/10.1074/jbc.M408081200

    Article  CAS  PubMed  Google Scholar 

  58. Chang K-J, Wang C-C (2004) Translation initiation from a naturally occurring non-AUG codon in Saccharomyces cerevisiae. J Biol Chem 279(14):13778–13785. https://doi.org/10.1074/jbc.M311269200

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pieter Spealman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Spealman, P., Naik, A., McManus, J. (2021). uORF-seqr: A Machine Learning-Based Approach to the Identification of Upstream Open Reading Frames in Yeast. In: Labunskyy, V.M. (eds) Ribosome Profiling. Methods in Molecular Biology, vol 2252. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1150-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1150-0_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1149-4

  • Online ISBN: 978-1-0716-1150-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics