Skip to main content

Identification of Extrachromosomal Circular Forms of Active Transposable Elements Using Mobilome-Seq

Part of the Methods in Molecular Biology book series (MIMB,volume 2250)


Active transposable elements (TEs) generate insertion polymorphisms that can be detected through genome resequencing strategies. However, these techniques may have limitations for organisms with large genomes or for somatic insertions. Here, we present a method that takes advantage of the extrachromosomal circular DNA (eccDNA) forms of actively transposing TEs in order to detect and characterize active TEs in any plant or animal tissue. Mobilome-seq consists in selectively amplifying and sequencing eccDNAs. It relies on linear digestion of genomic DNA followed by rolling circle amplification of circular DNA. Both active DNA transposons and retrotransposons can be identified using this technique.

Key words

  • Extrachromosomal circular DNA (eccDNA)
  • Plasmid safe
  • Rolling circle DNA amplification (RCA)
  • Phi29
  • Transposable elements (TEs)
  • Retrotransposons
  • Mobilome sequencing

This is a preview of subscription content, access via your institution.

Buying options

USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-1134-0_7
  • Chapter length: 7 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-1134-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more


  1. Lisch D (2013) How important are transposons for plant evolution? Nat Rev Genet 14:49–61

    CAS  CrossRef  Google Scholar 

  2. Lanciano S, Mirouze M (2018) Transposable elements: all mobile, all different, some stress responsive, some adaptive? Curr Opin Genet Dev 49:106–114

    CAS  CrossRef  Google Scholar 

  3. Møller HD, Parsons L, Jørgensen TS, Botstein D, Regenberg B (2015) Extrachromosomal circular DNA is common in yeast. Proc Natl Acad Sci U S A 112(24):E3114–E3122

    CrossRef  Google Scholar 

  4. Møller HD, Bojsen RK, Tachibana C, Parsons L, Botstein D, Regenberg B (2016) Genome-wide purification of extrachromosomal circular DNA from eukaryotic cells. J Vis Exp 110:e54239

    Google Scholar 

  5. Mehta D, Hirsch-Hoffmann M, Were M, Patrignani A, Shan-e-Ali Zaidi S, Were H, Gruissem W, Vanderschuren H (2019) A new full-length circular DNA sequencing method for viral-sized genomes reveals that RNAi transgenic plants provoke a shift in geminivirus populations in the field. Nucleic Acids Res 47(2):e9

    CrossRef  Google Scholar 

  6. Shoura MJ, Gabdank I, Hansen L, Merker J, Gotlib J, Levene SD, Fire AZ (2017) Intricate and cell- type-specific populations of endogenous circular DNA (eccDNA) in Caenorhabditis elegans and Homo sapiens. G3 7:3295–3303

    CAS  CrossRef  Google Scholar 

  7. Lanciano S, Carpentier MC, Llauro C, Jobet E, Robakowska-Hyzorek D, Lasserre E, Ghesquière A, Panaud O, Mirouze M (2017) Sequencing the extrachromosomal circular mobilome reveals retrotransposon activity in plants. PLoS Genet 13(2):e1006630

    CrossRef  Google Scholar 

  8. Thieme M, Lanciano S, Balzergue S, Daccord N, Mirouze M, Bucher E (2017) Inhibition of RNA polymerase II allows controlled mobilisation of retrotransposons for plant breeding. Genome Biol 18(1):134

    CrossRef  Google Scholar 

  9. Bertioli DJ et al (2019) The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nat Genet 51(5):877–884

    CAS  CrossRef  Google Scholar 

  10. Esposito S, Barteri F, Casacuberta J, Mirouze M, Carputo D, Aversano R (2019) LTR-TEs abundance, timing and mobility in Solanum commersonii and S. tuberosum genomes following cold-stress conditions. Planta 250(5):1781–1787

    CAS  CrossRef  Google Scholar 

  11. Sow MD, Le Gac AL, Fichot R, Lanciano S, Delaunay A, Le Jan I, Lesage-Descauses MC, Citerne S, Caius J, Brunaud V, Soubigou-Taconnat L, Cochard H, Segura V, Chaparro C, Grunau C, Tost J, Brignolas F, Strauss SH, Mirouze M, Maury S (Manuscript submitted) Hypomethylated poplars show higher tolerance to water deficit and highlight dual role of DNA methylation in shoot meristem: regulation of stress response and of genome integrity.

  12. Barckmann B, El-Barouk M, Pélisson A, Mugat B, Li B, Franckhauser C, Fiston Lavier AS, Mirouze M, Fablet M, Chambeyron S (2018) The somatic piRNA pathway controls germline transposition over generations. Nucleic Acids Res 46(18):9524–9536

    CAS  CrossRef  Google Scholar 

  13. Poirier EZ, Goic B, Tomé-Poderti L, Frangeul L, Boussier J, Gausson V, Blanc H, Vallet T, Loyd H, Levi LI, Lanciano S, Baron C, Merkling SH, Lambrechts L, Mirouze M, Carpenter S, Vignuzzi M, Saleh MC (2018) Dicer-2-dependent generation of viral DNA from defective genomes of RNA viruses modulates antiviral immunity in insects. Cell Host Microbe 23(3):353–365.e8

    CAS  CrossRef  Google Scholar 

  14. Johne R, Müller H, Rector A, van Ranst M, Stevens H (2009) Rolling-circle amplification of viral DNA genomes using phi29 polymerase. Trends Microbiol 17:205–211

    CAS  CrossRef  Google Scholar 

  15. Gu W, Crawford ED, O’Donovan BD, Wilson MR, Chow ED, Retallack H, DeRisi JL (2016) Depletion of abundant sequences by hybridization (DASH): using Cas9 to remove unwanted high-abundance species in sequencing libraries and molecular counting applications. Genome Biol 17:41

    CAS  CrossRef  Google Scholar 

  16. Mirouze M, Reinders J, Bucher E, Nishimura T, Schneeberger K, Ossowski S, Cao J, Weigel D, Paszkowski J, Mathieu O (2009) Selective epigenetic control of retrotransposition in Arabidopsis. Nature 461:427–430

    CAS  CrossRef  Google Scholar 

Download references


This work was funded by IRD, a French ANR grant (ANR-13-JSV6-0002 “ExtraChrom”) and a EU Horizon 2020 programme under the Marie Skłodowska-Curie grant agreement No. 764965 (“EpiDiverse”) to M.M.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Marie Mirouze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Lanciano, S., Zhang, P., Llauro, C., Mirouze, M. (2021). Identification of Extrachromosomal Circular Forms of Active Transposable Elements Using Mobilome-Seq. In: Cho, J. (eds) Plant Transposable Elements. Methods in Molecular Biology, vol 2250. Humana, New York, NY.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1133-3

  • Online ISBN: 978-1-0716-1134-0

  • eBook Packages: Springer Protocols