Skip to main content

Sequence-Specific Amplified Polymorphism (SSAP) and Sequence Characterized Amplified Region (SCAR) Markers in Zea mays

  • 569 Accesses

Part of the Methods in Molecular Biology book series (MIMB,volume 2250)

Abstract

Transposable elements (TEs) are mobile, recurring DNA sequences scattered throughout genome and have a large impact on genome structure and function. Several genetic marker techniques were developed to exploit their ubiquitous nature. Sequence-specific amplified polymorphism (SSAP) is a TE-based genetic marker system that has been used in various purposes such as measuring genetic relatedness between species, deciphering the population structures, molecular tagging for agronomic development in marker-assisted breeding (MAS). In addition to SSAP, sequence characterized amplified region (SCAR) from the SSAP markers provides an added advantage in identifying qualitative traits. Once developed SCAR markers are efficient, fast, and reliable method for genetic evaluations. These methods can be useful especially for the crops which have no genetic sequence information. With improved discriminatory ability they offer access to dynamic and polymorphic regions of genome. These techniques can be useful in breeding programs to improve or develop high yielding crops.

Key words

  • Transposable elements (TEs)
  • Sequence-specific amplified polymorphism (SSAP)
  • Sequence characterized amplified region (SCAR)
  • Polymorphism

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-1134-0_20
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-1134-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982

    CAS  CrossRef  Google Scholar 

  2. Finnegan DJ (1989) Eukaryotic transposable elements and genome evolution. Trends Genet 5:103–107

    CAS  CrossRef  Google Scholar 

  3. Volff JN (2006) Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes. BioEssays 28:913–922

    CAS  CrossRef  Google Scholar 

  4. Roy N, Choi JY, Lim MJ, Lee SI, Choi HJ, Kim NS (2015) Genetic and epigenetic diversity among dent, waxy, and sweet corns. Genes Genom 37:865–874

    CrossRef  Google Scholar 

  5. Schulman AH, Flavell AJ, Paux E, Ellis TH (2012) The application of LTR retrotransposons as molecular markers in plants. Methods Mol Biol 859:115–153

    CAS  CrossRef  Google Scholar 

  6. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    CAS  CrossRef  Google Scholar 

  7. Korswagen HC, Durbin RM, Smits MT, Plasterk RH (1996) Transposon Tc1-derived, sequence-tagged sites in Caenorhabditis elegans as markers for gene mapping. Proc Natl Acad Sci U S A 93:14680–14685

    CAS  CrossRef  Google Scholar 

  8. Kalendar R, Flavell AJ, Ellis TH, Sjakste T, Moisy C, Schulman AH (2011) Analysis of plant diversity with retrotransposon-based molecular markers. Heredity (Edinb) 106:520–530

    CAS  CrossRef  Google Scholar 

  9. Paux E, Faure S, Choulet F, Roger D, Gauthier V, Martinant JP, Sourdille P, Balfourier F, Le Paslier MC, Chauveau A, Cakir M, Gandon B, Feuillet C (2010) Insertion site-based polymorphism markers open new perspectives for genome saturation and marker-assisted selection in wheat. Plant Biotechnol J 8:196–210

    CAS  CrossRef  Google Scholar 

  10. Paran I, Michelmore RW (1993) Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet 85:985–993

    CAS  CrossRef  Google Scholar 

  11. Roy NS, Park KC, Lee SI, Im MJ, Ramekar RV, Kim NS (2018) Development of CACTA transposon derived SCAR markers and their use in population structure analysis in Zea mays. Genetica 146:1–12

    CAS  CrossRef  Google Scholar 

  12. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Van Buren P, Vaughn MW, Ying K, Yeh CT, Emrich SJ, Jia Y, Kalyanaraman A, Hsia AP, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia JM, Deragon JM, Estill JC, Fu Y, Jeddeloh JA, Han Y, Lee H, Li P, Lisch DR, Liu S, Liu Z, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen JL, Dawe RK, Jiang J, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    CAS  CrossRef  Google Scholar 

  13. Roy NS (2017) Development of molecular genetic marker systems in maize based on transposable elements, in: Department of Molecular Bioscience. Kangwon National University, Chuncheon

    Google Scholar 

  14. Wezenter JL (2005) Identification of DNA sequences of long terminal repeat retrotransposons in maize, Sept 2005

    Google Scholar 

  15. Estep MC, DeBarry JD, Bennetzen JL (2013) The dynamics of LTR retrotransposon accumulation across 25 million years of panicoid grass evolution. Heredity (Edinb) 110:194–204

    CAS  CrossRef  Google Scholar 

  16. Ou S, Jiang N (2018) LTR_retriever: a highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant Physiol 176:1410–1422

    CAS  CrossRef  Google Scholar 

  17. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    CAS  PubMed  Google Scholar 

  18. Chevallet M, Luche S, Rabilloud T (2006) Silver staining of proteins in polyacrylamide gels. Nat Protoc 1:1852–1858

    CAS  CrossRef  Google Scholar 

  19. Guo W, Zhang T, Shen X, Yu JZ, Kohel RJ (2003) Development of SCAR marker linked to a major QTL for high fiber strength and its usage in molecular-marker assisted selection in upland cotton. Crop Sci 43. https://doi.org/10.2135/cropsci2003.2252

  20. Kohany O, Gentles AJ, Hankus L, Jurka J (2006) Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC Bioinformatics 7:474

    CrossRef  Google Scholar 

Download references

Acknowledgment

This work was carried out with the research grant from Kangwon National University to NSK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam-Soo Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Roy, N.S., Ramekar, R.V., Kim, NS. (2021). Sequence-Specific Amplified Polymorphism (SSAP) and Sequence Characterized Amplified Region (SCAR) Markers in Zea mays. In: Cho, J. (eds) Plant Transposable Elements. Methods in Molecular Biology, vol 2250. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1134-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1134-0_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1133-3

  • Online ISBN: 978-1-0716-1134-0

  • eBook Packages: Springer Protocols