Skip to main content

Measurement of Genetic Mobility Using a Transposon-Based Marker System in Sorghum

Part of the Methods in Molecular Biology book series (MIMB,volume 2250)

Abstract

Transposable elements (TEs) are ubiquitous repetitive components of eukaryotic organisms that show mobility in the genome against diverse stresses. TEs contribute considerably to the size, structure, and plasticity of genomes and also play an active role in genome evolution by helping their hosts adapt to novel conditions by conferring useful characteristics. We developed a simple and rapid method for investigation of genetic mobility and diversity among TEs in combination with a target region amplification polymorphism (TE-TRAP) marker system in gamma-irradiated sorghum mutants. The TE-TRAP marker system reveals a high level of genetic diversity, which provides a useful marker resource for genetic mobility research.

Key words

  • TE-TRAP
  • Transposable elements
  • Sorghum bicolor
  • Genetic diversity
  • PCR-based marker

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-1134-0_19
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-1134-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Genome 10K Community of Scientists (2009) Genome 10K: a proposal to obtain whole-genome sequence for 10 000 vertebrate species. J Hered 100:659–674. https://doi.org/10.1093/jhered/esp086

    CAS  CrossRef  PubMed Central  Google Scholar 

  2. Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17:333–351. https://doi.org/10.1038/nrg.2016.49

    CAS  CrossRef  PubMed  Google Scholar 

  3. Gupta PK, Rustgi S (2004) Molecular markers from the transcribed/expressed region of the genome in higher plants. Funct Integr Genomics 4:139–162. https://doi.org/10.1007/s10142-004-0107-0

    CAS  CrossRef  PubMed  Google Scholar 

  4. Hu J, Vick BA (2003) Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant Mol Biol Rep 21:289–294. https://doi.org/10.1007/BF02772804

    CAS  CrossRef  Google Scholar 

  5. Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461. https://doi.org/10.1007/s001220100570

    CAS  CrossRef  Google Scholar 

  6. McClintock B (1950) The origin and behavior of mutable loci in maize. Proc Natl Acad Sci U S A 36:344–355. https://doi.org/10.1073/pnas.36.6.344

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  7. Kapitonov VV, Jurka J (2003) Molecular paleontology of transposable elements in the Drosophila melanogaster genome. Proc Natl Acad Sci U S A 100:6569–6574. https://doi.org/10.1073/pnas.0732024100

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  8. International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921. https://doi.org/10.1038/35057062

    CrossRef  Google Scholar 

  9. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556. https://doi.org/10.1038/nature07723

    CAS  CrossRef  PubMed  Google Scholar 

  10. Feschotte C, Jiang N, Wessler SR (2002) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3:329–341. https://doi.org/10.1038/nrg793

    CAS  CrossRef  PubMed  Google Scholar 

  11. Muñoz-López M, Garcia-Perez JL (2010) DNA transposons: nature and applications in genomics. Curr Genomics 11:115–128. https://doi.org/10.2174/138920210790886871

    CrossRef  PubMed  PubMed Central  Google Scholar 

  12. Walker EL, Eggleston WB, Demopulos D, Kermicle J, Dellaporta SL (1997) Insertions of a novel class of transposable elements with a strong target site preference at the r locus of maize. Genetics 146:681–693

    CAS  CrossRef  Google Scholar 

  13. Kapitonov VV, Jurka J (1999) Molecular paleontology of transposable elements from Arabidopsis thaliana. Genetica 107:27–37. https://doi.org/10.1023/A:1004030922447

    CAS  CrossRef  PubMed  Google Scholar 

  14. Jiang N, Bao Z, Zhang X, Hirochika H, Eddy SR, McCouch SR, Wessler SR (2003) An active DNA transposon family in rice. Nature 421:163–167. https://doi.org/10.1038/nature01214

    CAS  CrossRef  PubMed  Google Scholar 

  15. Zhang X, Feschotte C, Zhang Q, Jiang N, Eggleston WB, Wessler SR (2001) P instability factor: an active maize transposon system associated with the amplification of Tourist-like MITEs and a new superfamily of transposases. Proc Natl Acad Sci U S A 98:12572–12577. https://doi.org/10.1073/pnas.211442198

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  16. Yang G (2013) MITE Digger, an efficient and accurate algorithm for genome wide discovery of miniature inverted repeat transposable elements. BMC Bioinform 14:186. https://doi.org/10.1186/1471-2105-14-186

    CrossRef  Google Scholar 

  17. Lee JK, Kwon SJ, Park KC, Kim NS (2005) Isaac-CACTA transposons: new genetic markers in maize and sorghum. Genome 48:455–460. https://doi.org/10.1139/g05-013

    CAS  CrossRef  PubMed  Google Scholar 

  18. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19(1):11–15

    Google Scholar 

  19. Im SB, Kwon SJ, Ryu J, Jeong SW, Kim JB, Ahn JW, Kim SH, Jo YD, Choi HI, Kang SY (2016) Development of a transposon-based marker system for mutation breeding in sorghum (Sorghum bicolor L.). Genet Mol Res 15. https://doi.org/10.4238/gmr.15038713

  20. Nei M (1972) Genetic distance between populations. Am Nat 106:283–292. https://doi.org/10.1086/282771

    CrossRef  Google Scholar 

  21. Yu SB, Xu WJ, Vijayakumar CHM, Ali J, Fu BY, Xu JL, Jiang YZ, Marghirang R, Domingo J, Aquino C, Virmani SS, Li ZK (2003) Molecular diversity and multilocus organization of the parental lines used in the International Rice Molecular Breeding Program. Theor Appl Genet 108:131–140. https://doi.org/10.1007/s00122-003-1400-3

    CAS  CrossRef  PubMed  Google Scholar 

  22. Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129. https://doi.org/10.1093/bioinformatics/bti282

    CAS  CrossRef  PubMed  Google Scholar 

  23. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. https://doi.org/10.1093/molbev/msm092

    CAS  CrossRef  PubMed  Google Scholar 

  24. Schneider S, Roessli D, Excoffier L (2000) Arlequin ver. 2.000. A software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, Geneva

    Google Scholar 

  25. Peakall R, Smouse PE (2006) GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x

    Google Scholar 

  26. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635. https://doi.org/10.1093/bioinformatics/btm308

    CAS  CrossRef  PubMed  Google Scholar 

  27. Lin X, Kaul S, Rounsley S, Shea TP, Benito MI, Town CD, Fujii CY, Mason T, Bowman CL, Barnstead M et al (1999) Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402:761–768. https://doi.org/10.1038/45471

    CAS  CrossRef  PubMed  Google Scholar 

  28. Poczai P, Varga I, Laos M, Cseh A, Bell N, Valkonen JPT, Hyvönen J (2013) Advances in plant gene-targeted and functional markers: a review. Plant Methods 9:6. https://doi.org/10.1186/1746-4811-9-6

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by the research program of KAERI, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-Jae Kwon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Lyu, J.I., Jo, Y.D., Ahn, JW., Kim, JB., Kwon, SJ. (2021). Measurement of Genetic Mobility Using a Transposon-Based Marker System in Sorghum. In: Cho, J. (eds) Plant Transposable Elements. Methods in Molecular Biology, vol 2250. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1134-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1134-0_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1133-3

  • Online ISBN: 978-1-0716-1134-0

  • eBook Packages: Springer Protocols