Skip to main content

Detection of Transposable Element Insertions in Arabidopsis Using Sequence Capture

Part of the Methods in Molecular Biology book series (MIMB,volume 2250)


Transposable elements (TEs) are repetitive DNA sequences that have the ability to mobilize in the genome and create major effect mutations. Despite the importance of transposition as a source of genetic novelty, we still know little about the rate, landscape, and consequences of TE mobilization. This situation stems in large part from the repetitive nature of TEs, which complicates their analysis. Moreover, TE mobilization is typically rare and therefore new TE (i.e., non-reference) insertions tend to be missed in small-scale population studies. This chapter describes a TE-sequence capture approach designed to identify transposition events for most of the TE families that are potentially active in Arabidopsis thaliana. We show that our TE-sequence capture design provides an efficient means to detect with high sensitivity and specificity insertions that are present at a frequency as low as 1/1000 within a DNA sample.

Key words

  • Arabidopsis
  • Transposable elements
  • Transposition
  • Sequence capture

This is a preview of subscription content, access via your institution.

Buying options

USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-1134-0_14
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-1134-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more


  1. Quadrana L, Bortolini Silveira A, Mayhew GF, LeBlanc C, Martienssen RA, Jeddeloh JA, Colot V (2016) The Arabidopsis thaliana mobilome and its impact at the species level. eLife 5:e15716.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  2. Ahmed I, Sarazin A, Bowler C, Colot V, Quesneville H (2011) Genome-wide evidence for local DNA methylation spreading from small RNA-targeted sequences in Arabidopsis. Nucleic Acids Res 39(16):6919–6931.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  3. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408(6814):796–815

    CrossRef  Google Scholar 

  4. Ito H, Kakutani T (2014) Control of transposable elements in Arabidopsis thaliana. Chromosome Res 22(2):217–223

    CAS  CrossRef  Google Scholar 

  5. Tsay YF, Frank MJ, Page T, Dean C, Crawford NM (1993) Identification of a mobile endogenous transposon in Arabidopsis thaliana. Science 260(5106):342–344

    CAS  CrossRef  Google Scholar 

  6. Jurka J (2000) Repbase update: a database and an electronic journal of repetitive elements. Trends Genet 16(9):418–420.

    CAS  CrossRef  PubMed  Google Scholar 

  7. Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J (2005) Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110(1–4):462–467.

    CAS  CrossRef  PubMed  Google Scholar 

  8. Schmitz RJ, Schultz MD, Urich MA, Nery JR, Pelizzola M, Libiger O, Alix A, McCosh RB, Chen H, Schork NJ, Ecker JR (2013) Patterns of population epigenomic diversity. Nature 495(7440):193–198

    CAS  CrossRef  Google Scholar 

  9. Schneeberger K, Ossowski S, Ott F, Klein JD, Wang X, Lanz C, Smith LM, Cao J, Fitz J, Warthmann N, Henz SR, Huson DH, Weigel D (2011) Reference-guided assembly of four diverse Arabidopsis thaliana genomes. Proc Natl Acad Sci U S A 108(25):10249–10254

    CAS  CrossRef  Google Scholar 

  10. Allen GC, Flores-Vergara MA, Krasynanski S, Kumar S, Thompson WF (2006) A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat Protoc 1(5):2320–2325

    CAS  CrossRef  Google Scholar 

  11. Quadrana L, Etcheverry M, Gilly A, Caillieux E, Madoui M-A, Guy J, Bortolini Silveira A, Engelen S, Baillet V, Wincker P, Aury J-M, Colot V (2019) Transposition favors the generation of large effect mutations that may facilitate rapid adaption. Nat Commun 10(1):3421

    CrossRef  Google Scholar 

Download references


We thank members of the Colot group for discussions, especially P. Baduel for critical reading of the manuscript. Support was from the Agence National de la Recherche (ANR-09-BLAN-0237, the Investissements d’Avenir ANR-10-LABX-54 MEMO LIFE, ANR-11-IDEX-0001-02 PSL* Research University to V.C) and the Centre National de la Recherche Scientifique (MOMENTUM program, to L.Q.).

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Leandro Quadrana or Vincent Colot .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Supplementary Table 1

Identity of TE sequences included in the TE-sequence capture design (XLSX 20 kb)

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Quadrana, L., Silveira, A.B., Caillieux, E., Colot, V. (2021). Detection of Transposable Element Insertions in Arabidopsis Using Sequence Capture. In: Cho, J. (eds) Plant Transposable Elements. Methods in Molecular Biology, vol 2250. Humana, New York, NY.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1133-3

  • Online ISBN: 978-1-0716-1134-0

  • eBook Packages: Springer Protocols