Skip to main content

The Intervening Removable Affinity Tag (iRAT) System for the Production of Recombinant Antibody Fragments

  • Protocol
  • First Online:
Multiprotein Complexes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2247))

  • 1478 Accesses

Abstract

Fv and Fab antibody fragments are versatile co-crystallization partners that aid in the structural determination of otherwise “uncrystallizable” proteins, including human/mammalian membrane proteins. Accessible methods for the rapid and reliable production of recombinant antibody fragments have been long sought. In this chapter, we describe the concept and protocols of the intervening removable affinity tag (iRAT) system for the efficient production of Fv and Fab fragments in milligram quantities, which are sufficient for structural studies. As an extension of the iRAT system, we also provide a new method for the creation of genetically encoded fluorescent Fab fragments, which are potentially useful as molecular devices in various basic biomedical and clinical procedures, such as immunofluorescence cytometry, bioimaging, and immunodiagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Griffin L, Lawson A (2011) Antibody fragments as tools in crystallography. Clin Exp Immunol 165:285–291

    Article  CAS  Google Scholar 

  2. Lieberman RL, Culver JA, Entzminger KC et al (2011) Crystallization chaperone strategies for membrane proteins. Methods 55:293–302

    Article  CAS  Google Scholar 

  3. Hino T, Arakawa T, Iwanari H et al (2012) G-protein-coupled receptor inactivation by an allosteric inverse-agonist antibody. Nature 482:237–240

    Article  CAS  Google Scholar 

  4. Nomura N, Verdon G, Kang HJ et al (2015) Structure and mechanism of the mammalian fructose transporter GLUT5. Nature 526:397–401

    Article  CAS  Google Scholar 

  5. Asada H, Horita S, Hirata K et al (2018) Crystal structure of the human angiotensin II type 2 receptor bound to an angiotensin II analog. Nat Struct Mol Biol 25:570–576

    Article  CAS  Google Scholar 

  6. Nagarathinam K, Nakada-Nakura Y, Parthier C et al (2018) Outward open conformation of a Major Facilitator Superfamily multidrug/H+ antiporter provides insights into switching mechanism. Nat Commun 9:4005

    Google Scholar 

  7. Toyoda Y, Morimoto K, Suno R et al (2019) Ligand binding to human prostaglandin E receptor EP4 at the lipid-bilayer interface. Nat Chem Biol 15:18–26

    Google Scholar 

  8. Wu S, Avila-Sakar A, Kim J et al (2012) Fabs enable single particle cryoEM studies of small proteins. Structure 20:582–592

    Article  CAS  Google Scholar 

  9. Koehl A, Hu H, Maeda S et al (2018) Structure of the μ-opioid receptor-Gi protein complex. Nature 558:547–552

    Article  CAS  Google Scholar 

  10. Nomura Y, Sato Y, Suno R et al (2016) The intervening removable affinity tag (iRAT) production system facilitates Fv antibody fragment-mediated crystallography. Protein Sci 25:2268–2276

    Article  CAS  Google Scholar 

  11. Horita S, Nomura Y, Sato Y et al (2016) High-resolution crystal structure of the therapeutic antibody pembrolizumab bound to the human PD-1. Sci Rep 6:35297

    Article  CAS  Google Scholar 

  12. Ono M, Horita S, Sato Y et al (2018) Structural basis for tumor necrosis factor blockade with the therapeutic antibody golimumab. Protein Sci 27:1038–1046

    Article  CAS  Google Scholar 

  13. Koerber JT, Hornsby MJ, Wells JA (2015) An improved single-chain Fab platform for efficient display and recombinant expression. J Mol Biol 427:576–586

    Article  CAS  Google Scholar 

  14. Fields C, O’Connell D, Xiao S et al (2013) Creation of recombinant antigen-binding molecules derived from hybridomas secreting specific antibodies. Nat Protoc 8:1125–1148

    Article  Google Scholar 

  15. Lucast LJ, Batey RT, Doudna JA (2001) Large-scale purification of a stable form of recombinant tobacco etch virus protease. Biotechniques 30:544–546, 548, 550 passim

    Article  CAS  Google Scholar 

  16. Abdulrahman W, Radu L, Garzoni F et al (2015) The production of multiprotein complexes in insect cells using the baculovirus expression system. Methods Mol Biol 1261:91–114

    Article  CAS  Google Scholar 

  17. Markiv A, Beatson R, Burchell J et al (2011) Expression of recombinant multi-coloured fluorescent antibodies in gor-/trxB- E. coli cytoplasm. BMC Biotechnol 11:117

    Article  CAS  Google Scholar 

  18. Gross LA, Baird GS, Hoffman RC et al (2000) The structure of the chromophore within DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci U S A 97:11990–11995

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Shoichiro Horita, Hidetsugu Asada, and Tomoko Uemura for sharing their experiences on Sf9-baculovirus expression. The creation of the iRAT-based fluorescent Fab was conceived after being inspired by the pioneering work on multicolored fluorescent scFv by Markiv et al. [17]. This work was funded by the Strategic Basic Research Program from the Japan Science and Technology Agency (JST), the Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS) from the Japan Agency of Medical Research and Development (AMED), the Research on Development of New Drugs from the AMED, and the Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS) (Nos. 15K06968 and 18K05334).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Norimichi Nomura or So Iwata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nomura, N., Nomura, Y., Sato, Y., Iwata, S. (2021). The Intervening Removable Affinity Tag (iRAT) System for the Production of Recombinant Antibody Fragments. In: Poterszman, A. (eds) Multiprotein Complexes. Methods in Molecular Biology, vol 2247. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1126-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1126-5_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1125-8

  • Online ISBN: 978-1-0716-1126-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics