Advertisement

Studying Protein–DNA Interactions by Hydrogen/Deuterium Exchange Mass Spectrometry

  • Ruzena Filandrova
  • Daniel Kavan
  • Alan Kadek
  • Petr Novak
  • Petr ManEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2247)

Abstract

Protein hydrogen/deuterium exchange (HDX) coupled to mass spectrometry (MS) can be used to study interactions of proteins with various ligands, to describe the effects of mutations, or to reveal structural responses of proteins to different experimental conditions. It is often described as a method with virtually no limitations in terms of protein size or sample composition. While this is generally true, there are, however, ligands or buffer components that can significantly complicate the analysis. One such compound, that can make HDX-MS troublesome, is DNA. In this chapter, we will focus on the analysis of protein–DNA interactions, describe the detailed protocol, and point out ways to overcome the complications arising from the presence of DNA.

Key words

DNA Hydrogen/deuterium exchange Protein–DNA binding Structural mass spectrometry Transcription factor 

Notes

Acknowledgments

Czech Science Foundation projects 16-24309S and 16-20860S are gratefully acknowledged. Additional support was obtained from EU/MEYS projects BioCeV (CZ.1.05/1.1.00/02.0109) and NPU II (LQ1604). R.F. also thanks Charles University Grant Agency (project 1618218) and SVV260427/2019.

References

  1. 1.
    Katta V, Chait BT, Carr S (1991) Conformational changes in proteins probed by hydrogen-exchange electrospray-ionization mass spectrometry. Rapid Commun Mass Spectrom 5:214–217PubMedCrossRefGoogle Scholar
  2. 2.
    Zhang Z, Smith DL (1993) Determination of amide hydrogen exchange by mass spectrometry: a new tool for protein structure elucidation. Protein Sci 2:522–531PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Bai YW, Milne JS, Mayne L et al (1993) Primary structure effects on peptide group hydrogen-exchange. Proteins 17:75–86PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Engen JR, Wales TE (2015) Analytical aspects of hydrogen exchange mass spectrometry. Annu Rev Anal Chem 8:127–148CrossRefGoogle Scholar
  5. 5.
    Oganesyan I, Lento C, Wilson DJ (2018) Contemporary hydrogen deuterium exchange mass spectrometry. Methods 144:27–42PubMedCrossRefGoogle Scholar
  6. 6.
    Sorokin VA, Gladchenko GO, Valeev VA (1986) DNA protonation at low ionic strength of solution. Die Makromol Chemie 187:1053–1063CrossRefGoogle Scholar
  7. 7.
    Ma L, Fitzgerald MC (2003) A new H/D exchange- and mass spectrometry-based method for thermodynamic analysis of protein-DNA interactions. Chem Biol 10:1205–1213PubMedCrossRefGoogle Scholar
  8. 8.
    Sperry JB, Wilcox JM, Gross ML (2008) Strong anion exchange for studying protein-DNA interactions by H/D exchange mass spectrometry. J Am Soc Mass Spectrom 19:887–890PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Sperry JB, Shi X, Rempel DL et al (2008) A mass spectrometric approach to the study of DNA-binding proteins: interaction of human TRF2 with telomeric DNA. Biochemistry 47:1797–1807PubMedCrossRefGoogle Scholar
  10. 10.
    Poliakov A, Jardine P, Prevelige PE (2008) Hydrogen/deuterium exchange on protein solutions containing nucleic acids: utility of protamine sulfate. Rapid Commun Mass Spectrom 22:2423–2428PubMedCrossRefGoogle Scholar
  11. 11.
    Roberts VA, Pique ME, Hsu S et al (2012) Combining HD exchange mass spectroscopy and computational docking reveals extended DNA-binding surface on uracil-DNA glycosylase. Nucleic Acids Res 40:6070–6081PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Graham BW, Tao Y, Dodge KL et al (2016) DNA interactions probed by hydrogen-deuterium exchange (HDX) Fourier transform ion cyclotron resonance mass spectrometry confirm external binding sites on the minichromosomal maintenance (MCM) helicase. J Biol Chem 291:12467–12480PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Boura E, Silhan J, Herman P et al (2007) Both the N-terminal loop and wing W2 of the forkhead domain of transcription factor Foxo4 are important for DNA binding. J Biol Chem 282:8265–8275PubMedCrossRefGoogle Scholar
  14. 14.
    Slavata L, Chmelik J, Kavan D et al (2019) MS-based approaches enable the structural characterization of transcription factor/DNA response element complex. Biomol Ther 9:E535Google Scholar
  15. 15.
    Anbanandam A, Albarado DC, Nguyen CT et al (2006) Insights into transcription enhancer factor 1 (TEF-1) activity from the solution structure of the TEA domain. Proc Natl Acad Sci U S A 103:17225–17230PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Wang L, Pan H, Smith DL (2002) Hydrogen exchange-mass spectrometry. Mol Cell Proteomics 1:132–138PubMedCrossRefGoogle Scholar
  17. 17.
    Kadek A, Mrazek H, Halada P et al (2014) Aspartic protease nepenthesin-1 as a tool for digestion in hydrogen/deuterium exchange mass spectrometry. Anal Chem 86:4287–4294PubMedCrossRefGoogle Scholar
  18. 18.
    Kochert BA, Iacob RE, Wales TE et al (2018) Hydrogen-deuterium exchange mass spectrometry to study protein complexes. In: Methods in molecular biology (Clifton, N.J.). Humana Press, New York, NY, pp 153–171Google Scholar
  19. 19.
    Rand KD, Zehl M, Jensen ON et al (2009) Protein hydrogen exchange measured at single-residue resolution by electron transfer dissociation mass spectrometry. Anal Chem 81:5577–5584PubMedCrossRefGoogle Scholar
  20. 20.
    Mistarz UH, Bellina B, Jensen PF et al (2018) UV Photodissociation mass spectrometry accurately localize sites of backbone Deuteration in peptides. Anal Chem 90:1077–1080PubMedCrossRefGoogle Scholar
  21. 21.
    Mayne L, Kan ZY, Sevugan Chetty P et al (2011) Many overlapping peptides for protein hydrogen exchange experiments by the fragment separation-mass spectrometry method. J Am Soc Mass Spectrom 22:1898–1905PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Kan Z-Y, Walters BT, Mayne L et al (2013) Protein hydrogen exchange at residue resolution by proteolytic fragmentation mass spectrometry analysis. Proc Natl Acad Sci U S A 110:16438–16443PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Cravello L, Lascoux D, Forest E (2003) Use of different proteases working in acidic conditions to improve sequence coverage and resolution in hydrogen/deuterium exchange of large proteins. Rapid Commun Mass Spectrom 17:2387–2393PubMedCrossRefGoogle Scholar
  24. 24.
    Rey M, Man P, Brandolin G et al (2009) Recombinant immobilized rhizopuspepsin as a new tool for protein digestion in hydrogen/deuterium exchange mass spectrometry. Rapid Commun Mass Spectrom 23:3431–3438PubMedCrossRefGoogle Scholar
  25. 25.
    Kadek A, Tretyachenko V, Mrazek H et al (2014) Expression and characterization of plant aspartic protease nepenthesin-1 from Nepenthes gracilis. Protein Expr Purif 95:121–128PubMedCrossRefGoogle Scholar
  26. 26.
    Yang M, Hoeppner M, Rey M et al (2015) Recombinant Nepenthesin II for hydrogen/deuterium exchange mass spectrometry. Anal Chem 87:6681–6687PubMedCrossRefGoogle Scholar
  27. 27.
    Kadek A, Kavan D, Marcoux J et al (2017) Interdomain electron transfer in cellobiose dehydrogenase is governed by surface electrostatics. Biochim Biophys Acta Gen Subj 1861:157–167PubMedCrossRefGoogle Scholar
  28. 28.
    Moroco JA, Engen JR (2015) Replication in bioanalytical studies with HDX MS: aim as high as possible. Bioanalysis 7:1065–1067PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Houde D, Berkowitz SA, Engen JR (2011) The utility of hydrogen/deuterium exchange mass spectrometry in biopharmaceutical comparability studies. J Pharm Sci 100:2071–2086PubMedCrossRefGoogle Scholar
  30. 30.
    Wales TE, Poe JA, Emert-Sedlak L et al (2016) Hydrogen exchange mass spectrometry of related proteins with divergent sequences: a comparative study of HIV-1 Nef allelic variants. J Am Soc Mass Spectrom 27:1048–1061PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Pascal BD, Willis S, Lauer JL et al (2012) HDXWorkbench: software for the analysis of H/D exchange MS data. J Am Soc Mass Spectrom 23:1512–1521PubMedCrossRefGoogle Scholar
  32. 32.
    Guttman M, Weis DD, Engen JR et al (2013) Analysis of overlapped and noisy hydrogen/deuterium exchange mass spectra. J Am Soc Mass Spectrom 24:1906–1912PubMedCrossRefGoogle Scholar
  33. 33.
    Lindner R, Lou X, Reinstein J et al (2014) Hexicon 2: automated processing of hydrogen-deuterium exchange mass spectrometry data with improved deuteration distribution estimation. J Am Soc Mass Spectrom 25:1018–1028PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Rey M, Sarpe V, Burns KM et al (2014) Mass spec studio for integrative structural biology. Structure 22:1538–1548PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Kan ZY, Ye X, Skinner JJ et al (2019) ExMS2: an integrated solution for hydrogen-deuterium exchange mass spectrometry data analysis. Anal Chem 91:7474–7481PubMedCrossRefGoogle Scholar
  36. 36.
    Claesen J, Burzykowski T (2017) Computational methods and challenges in hydrogen/deuterium exchange mass spectrometry. Mass Spectrom Rev 36:649–667PubMedCrossRefGoogle Scholar
  37. 37.
    Eggertson MJ, Fadgen K, Engen JR et al (2020) Considerations in the analysis of hydrogen exchange mass spectrometry data. Methods Mol Biol 2051:407–435PubMedCrossRefGoogle Scholar
  38. 38.
    Kavan D, Man P (2011) MSTools - web based application for visualization and presentation of HXMS data. Int J Mass Spectrom 302:53–58CrossRefGoogle Scholar
  39. 39.
    Strohalm M, Kavan D, Novak P et al (2010) mMass 3: a cross-platform software environment for precise analysis of mass spectrometric data. Anal Chem 82:4648–4651PubMedCrossRefGoogle Scholar
  40. 40.
    Majumdar R, Manikwar P, Hickey JM et al (2012) Minimizing carry-over in an online pepsin digestion system used for the H/D exchange mass spectrometric analysis of an IgG1 monoclonal antibody. J Am Soc Mass Spectrom 23:2140–2148PubMedCrossRefGoogle Scholar
  41. 41.
    Rey M, Mrazek H, Pompach P et al (2010) Effective removal of nonionic detergents in protein mass spectrometry, hydrogen/deuterium exchange, and proteomics. Anal Chem 82:5107–5116PubMedCrossRefGoogle Scholar
  42. 42.
    Glasoe PK, Long FA (1960) Use of glass electrodes to measure acidities in deuterium oxide 1,2. J Phys Chem 64:188–190CrossRefGoogle Scholar
  43. 43.
    Guttman M, Wales TE, Whittington D et al (2016) Tuning a high transmission ion guide to prevent gas-phase proton exchange during H/D exchange MS analysis. J Am Soc Mass Spectrom 27:662–668PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2021

Authors and Affiliations

  • Ruzena Filandrova
    • 1
    • 2
  • Daniel Kavan
    • 1
  • Alan Kadek
    • 1
    • 3
  • Petr Novak
    • 1
  • Petr Man
    • 1
    Email author
  1. 1.Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
  2. 2.Faculty of Sciences, Charles UniversityPragueCzech Republic
  3. 3.Heinrich Pette InstituteLeibniz Institute for Experimental VirologyHamburgGermany

Personalised recommendations