Advertisement

High-Dimensional Analysis of Circulating and Tissue-Derived Myeloid-Derived Suppressor Cells from Patients with Glioblastoma

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2236)

Abstract

We will first describe analysis of MDSC subsets from patient tumors with multicolor flow cytometry. The key components of this methodology are to obtain viable single cell suspensions and eliminate red blood cell contamination.

Key words

Myeloid-derived suppressor cells (MDSCs) CyTOF Flow cytometry Glioblastoma (GBM) Peripheral blood Patient tumor Immune analysis 

References

  1. 1.
    Raychaudhuri B, Rayman P, Ireland J, Ko J, Rini B, Borden EC, Garcia J, Vogelbaum MA, Finke J (2011) Myeloid-derived suppressor cell accumulation and function in patients with newly diagnosed glioblastoma. Neuro-Oncology 13(6):591–599.  https://doi.org/10.1093/neuonc/nor042CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174.  https://doi.org/10.1038/nri2506CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kumar V, Patel S, Tcyganov E, Gabrilovich DI (2016) The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol 37(3):208–220.  https://doi.org/10.1016/j.it.2016.01.004CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Peereboom DM, Alban TJ, Grabowski MM, Alvarado AG, Otvos B, Bayik D, Roversi G, McGraw M, Huang P, Mohammadi AM, Kornblum HI, Radivoyevitch T, Ahluwalia MS, Vogelbaum MA, Lathia JD (2019) Metronomic capecitabine as an immune modulator in glioblastoma patients reduces myeloid-derived suppressor cells. JCI Insight 4(22):e130748.  https://doi.org/10.1172/jci.insight.130748CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Toor SM, Syed Khaja AS, El Salhat H, Faour I, Kanbar J, Quadri AA, Albashir M, Elkord E (2017) Myeloid cells in circulation and tumor microenvironment of breast cancer patients. Cancer Immunol Immunother 66(6):753–764.  https://doi.org/10.1007/s00262-017-1977-zCrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wu L, Liu H, Guo H, Wu Q, Yu S, Qin Y, Wang G, Wu Q, Zhang R, Wang L, Zhang L, Liu C, Jiao S, Liu T (2018) Circulating and tumor-infiltrating myeloid-derived suppressor cells in cervical carcinoma patients. Oncol Lett 15(6):9507–9515.  https://doi.org/10.3892/ol.2018.8532CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Haverkamp JM, Crist SA, Elzey BD, Cimen C, Ratliff TL (2011) In vivo suppressive function of myeloid-derived suppressor cells is limited to the inflammatory site. Eur J Immunol 41(3):749–759.  https://doi.org/10.1002/eji.201041069CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Corzo CA, Condamine T, Lu L, Cotter MJ, Youn JI, Cheng P, Cho HI, Celis E, Quiceno DG, Padhya T, McCaffrey TV, McCaffrey JC, Gabrilovich DI (2010) HIF-1alpha regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med 207(11):2439–2453.  https://doi.org/10.1084/jem.20100587CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Maenhout SK, Van Lint S, Emeagi PU, Thielemans K, Aerts JL (2014) Enhanced suppressive capacity of tumor-infiltrating myeloid-derived suppressor cells compared with their peripheral counterparts. Int J Cancer 134(5):1077–1090.  https://doi.org/10.1002/ijc.28449CrossRefPubMedGoogle Scholar
  10. 10.
    Bronte V, Brandau S, Chen SH, Colombo MP, Frey AB, Greten TF, Mandruzzato S, Murray PJ, Ochoa A, Ostrand-Rosenberg S, Rodriguez PC, Sica A, Umansky V, Vonderheide RH, Gabrilovich DI (2016) Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun 7:12150.  https://doi.org/10.1038/ncomms12150CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Nowicka M, Krieg C, Weber LM, Hartmann FJ, Guglietta S, Becher B, Levesque MP, Robinson MD (2017) CyTOF workflow: differential discovery in high-throughput high-dimensional cytometry datasets. F1000Res 6:748.  https://doi.org/10.12688/f1000research.11622.2CrossRefPubMedGoogle Scholar
  12. 12.
    Chen H, Ye F, Guo G (2019) Revolutionizing immunology with single-cell RNA sequencing. Cell Mol Immunol 16(3):242–249.  https://doi.org/10.1038/s41423-019-0214-4CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Gaublomme JT, Li B, McCabe C, Knecht A, Yang Y, Drokhlyansky E, Van Wittenberghe N, Waldman J, Dionne D, Nguyen L, De Jager PL, Yeung B, Zhao X, Habib N, Rozenblatt-Rosen O, Regev A (2019) Nuclei multiplexing with barcoded antibodies for single-nucleus genomics. Nat Commun 10(1):2907.  https://doi.org/10.1038/s41467-019-10756-2CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, Chattopadhyay PK, Swerdlow H, Satija R, Smibert P (2017) Simultaneous epitope and transcriptome measurement in single cells. Nat Methods 14(9):865–868.  https://doi.org/10.1038/nmeth.4380CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Granja JM, Klemm S, McGinnis LM, Kathiria AS, Mezger A, Corces MR, Parks B, Gars E, Liedtke M, Zheng GXY, Chang HY, Majeti R, Greenleaf WJ (2019) Single-cell multiomic analysis identifies regulatory programs in mixed-phenotype acute leukemia. Nat Biotechnol 37(12):1458–1465.  https://doi.org/10.1038/s41587-019-0332-7CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Alban TJ, Alvarado AG, Sorensen MD, Bayik D, Volovetz J, Serbinowski E, Mulkearns-Hubert EE, Sinyuk M, Hale JS, Onzi GR, McGraw M, Huang P, Grabowski MM, Wathen CA, Ahluwalia MS, Radivoyevitch T, Kornblum HI, Kristensen BW, Vogelbaum MA, Lathia JD (2018) Global immune fingerprinting in glioblastoma patient peripheral blood reveals immune-suppression signatures associated with prognosis. JCI Insight 3(21):e122264.  https://doi.org/10.1172/jci.insight.122264CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Gielen PR, Schulte BM, Kers-Rebel ED, Verrijp K, Bossman SA, Ter Laan M, Wesseling P, Adema GJ (2016) Elevated levels of polymorphonuclear myeloid-derived suppressor cells in patients with glioblastoma highly express S100A8/9 and arginase and suppress T cell function. Neuro-Oncology 18(9):1253–1264.  https://doi.org/10.1093/neuonc/now034CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Trellakis S, Bruderek K, Hutte J, Elian M, Hoffmann TK, Lang S, Brandau S (2013) Granulocytic myeloid-derived suppressor cells are cryosensitive and their frequency does not correlate with serum concentrations of colony-stimulating factors in head and neck cancer. Innate Immun 19(3):328–336.  https://doi.org/10.1177/1753425912463618CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2021

Authors and Affiliations

  1. 1.Department of Cardiovascular and Metabolic SciencesCleveland ClinicClevelandUSA
  2. 2.Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human BehaviorUniversity of California Los AngelesLos AngelesUSA

Personalised recommendations