Advertisement

Opioid Modulation of Neuronal Iron and Potential Contributions to NeuroHIV

Protocol
  • 451 Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 2201)

Abstract

Opioid use has substantially increased over recent years and remains a major driver of new HIV infections worldwide. Clinical studies indicate that opioids may exacerbate the symptoms of HIV-associated neurocognitive disorders (HAND), but the mechanisms underlying opioid-induced cognitive decline remain obscure. We recently reported that the μ-opioid agonist morphine increased neuronal iron levels and levels of ferritin proteins that store iron, suggesting that opioids modulate neuronal iron homeostasis. Additionally, increased iron and ferritin heavy chain protein were necessary for morphine’s ability to reduce the density of thin and mushroom dendritic spines in cortical neurons, which are considered critical mediators of learning and memory, respectively. As altered iron homeostasis has been reported in HAND and related neurocognitive disorders like Alzheimer’s, Parkinson’s, and Huntington’s disease, understanding how opioids regulate neuronal iron metabolism may help identify novel drug targets in HAND with potential relevance to these other neurocognitive disorders. Here, we review the known mechanisms of opioid-mediated regulation of neuronal iron and corresponding cellular responses and discuss the implications of these findings for patients with HAND. Furthermore, we discuss a new molecular approach that can be used to understand if opioid modulation of iron affects the expression and processing of amyloid precursor protein and the contributions of this pathway to HAND.

Key words

Opioid Morphine Iron Endolysosome Ferritin Neuron Amyloid NeuroHIV HAND Chemokine 

Notes

Acknowledgments

Work supported by the National Institutes of Health (DA015014, DA032444, and DA040519 grants to OM).

References

  1. 1.
    Gostin LO, Hodge JG Jr, Noe SA (2017) Reframing the opioid epidemic as a national emergency. JAMA 318(16):1539–1540.  https://doi.org/10.1001/jama.2017.13358CrossRefPubMedGoogle Scholar
  2. 2.
    Volkow ND, McLellan AT (2016) Opioid abuse in chronic pain—misconceptions and mitigation strategies. N Engl J Med 374(13):1253–1263.  https://doi.org/10.1056/NEJMra1507771CrossRefPubMedGoogle Scholar
  3. 3.
    Compton WM, Jones CM, Baldwin GT (2016) Relationship between nonmedical prescription-opioid use and heroin use. N Engl J Med 374(2):154–163.  https://doi.org/10.1056/NEJMra1508490CrossRefPubMedGoogle Scholar
  4. 4.
    Cicero TJ, Ellis MS, Kasper ZA (2017) Increased use of heroin as an initiating opioid of abuse. Addict Behav 74:63–66.  https://doi.org/10.1016/j.addbeh.2017.05.030CrossRefPubMedGoogle Scholar
  5. 5.
    Wang X, Zhang T, Ho WZ (2011) Opioids and HIV/HCV infection. J Neuroimmune Pharmacol 6(4):477–489.  https://doi.org/10.1007/s11481-011-9296-1CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Perlman DC, Jordan AE (2018) The syndemic of opioid misuse, overdose, HCV, and HIV: structural-level causes and interventions. Curr HIV/AIDS Rep 15(2):96–112.  https://doi.org/10.1007/s11904-018-0390-3CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Degenhardt L, Peacock A, Colledge S et al (2017) Global prevalence of injecting drug use and sociodemographic characteristics and prevalence of HIV, HBV, and HCV in people who inject drugs: a multistage systematic review. Lancet Glob Health 5(12):e1192–e1207.  https://doi.org/10.1016/S2214-109X(17)30375-3CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Canan CE, Chander G, Monroe AK et al (2018) High-risk prescription opioid use among people living with HIV. J Acquir Immune Defic Syndr 78(3):283–290.  https://doi.org/10.1097/QAI.0000000000001690CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Tsao JC, Plankey MW, Young MA (2012) Pain, psychological symptoms and prescription drug misuse in HIV: a literature review. J Pain Manag 5(2):111–118PubMedPubMedCentralGoogle Scholar
  10. 10.
    Byrd DA, Fellows RP, Morgello S et al (2011) Neurocognitive impact of substance use in HIV infection. J Acquir Immune Defic Syndr 58(2):154–162.  https://doi.org/10.1097/QAI.0b013e318229ba41CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Murphy A, Barbaro J, Martinez-Aguado P et al (2019) The effects of opioids on HIV neuropathogenesis. Front Immunol 10:2445.  https://doi.org/10.3389/fimmu.2019.02445CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Eggers C, Arendt G, Hahn K et al (2017) German association of neuro AuN-I HIV-1-associated neurocognitive disorder: epidemiology, pathogenesis, diagnosis, and treatment. J Neurol 264(8):1715–1727.  https://doi.org/10.1007/s00415-017-8503-2CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sacktor N (2018) Changing clinical phenotypes of HIV-associated neurocognitive disorders. J Neurovirol 24(2):141–145.  https://doi.org/10.1007/s13365-017-0556-6CrossRefPubMedGoogle Scholar
  14. 14.
    Saylor D, Dickens AM, Sacktor N et al (2016) HIV-associated neurocognitive disorder—pathogenesis and prospects for treatment. Nat Rev Neurol 12(4):234–248.  https://doi.org/10.1038/nrneurol.2016.27CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Sheppard DP, Woods SP, Massman PJ et al (2019) Frequency and correlates of subjective cognitive impairment in HIV disease. AIDS Behav 23(3):617–626.  https://doi.org/10.1007/s10461-018-2297-9CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    McGuire JL, Barrett JS, Vezina HE et al (2014) Adjuvant therapies for HIV-associated neurocognitive disorders. Ann Clin Transl Neurol 1(11):938–952.  https://doi.org/10.1002/acn3.131CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Bougea A, Spantideas N, Galanis P et al (2019) Optimal treatment of HIV-associated neurocognitive disorders: myths and reality. A critical review. Ther Adv Infect Dis 6:2049936119838228.  https://doi.org/10.1177/2049936119838228CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Nash B, Festa L, Lin C et al (2019) Opioid and chemokine regulation of cortical synaptodendritic damage in HIV-associated neurocognitive disorders. Brain Res 1723:146409.  https://doi.org/10.1016/j.brainres.2019.146409CrossRefPubMedGoogle Scholar
  19. 19.
    Bourne J, Harris KM (2007) Do thin spines learn to be mushroom spines that remember? Curr Opin Neurobiol 17(3):381–386.  https://doi.org/10.1016/j.conb.2007.04.009CrossRefPubMedGoogle Scholar
  20. 20.
    Morrison JH, Baxter MG (2012) The ageing cortical synapse: hallmarks and implications for cognitive decline. Nat Rev Neurosci 13(4):240–250.  https://doi.org/10.1038/nrn3200CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Nash B, Tarn K, Irollo E et al (2019) Morphine-induced modulation of endolysosomal iron mediates upregulation of ferritin heavy chain in cortical neurons. eNeuro 6(4).  https://doi.org/10.1523/ENEURO.0237-19.2019
  22. 22.
    Festa L, Gutoskey CJ, Graziano A et al (2015) Induction of interleukin-1beta by human immunodeficiency virus-1 viral proteins leads to increased levels of neuronal ferritin heavy chain, synaptic injury, and deficits in flexible attention. J Neurosci 35(29):10,550–10,561.  https://doi.org/10.1523/JNEUROSCI.4403-14.2015CrossRefGoogle Scholar
  23. 23.
    Pitcher J, Abt A, Myers J et al (2014) Neuronal ferritin heavy chain and drug abuse affect HIV-associated cognitive dysfunction. J Clin Invest 124(2):656–669.  https://doi.org/10.1172/JCI70090CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Sengupta R, Burbassi S, Shimizu S et al (2009) Morphine increases brain levels of ferritin heavy chain leading to inhibition of CXCR4-mediated survival signaling in neurons. J Neurosci 29(8):2534–2544.  https://doi.org/10.1523/JNEUROSCI.5865-08.2009CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Patel JP, Sengupta R, Bardi G et al (2006) Modulation of neuronal CXCR4 by the micro-opioid agonist DAMGO. J Neurovirol 12(6):492–500.  https://doi.org/10.1080/13550280601064798CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Winckler B, Faundez V, Maday S et al (2018) The endolysosomal system and proteostasis: from development to degeneration. J Neurosci 38(44):9364–9374.  https://doi.org/10.1523/JNEUROSCI.1665-18.2018CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Khan N, Haughey NJ, Nath A et al (2019) Involvement of organelles and inter-organellar signaling in the pathogenesis of HIV-1 associated neurocognitive disorder and Alzheimer’s disease. Brain Res 1722:146389.  https://doi.org/10.1016/j.brainres.2019.146389CrossRefPubMedGoogle Scholar
  28. 28.
    Naslavsky N, Caplan S (2018) The enigmatic endosome—sorting the ins and outs of endocytic trafficking. J Cell Sci 131(13).  https://doi.org/10.1242/jcs.216499
  29. 29.
    Cullen PJ, Steinberg F (2018) To degrade or not to degrade: mechanisms and significance of endocytic recycling. Nat Rev Mol Cell Biol 19(11):679–696.  https://doi.org/10.1038/s41580-018-0053-7CrossRefPubMedGoogle Scholar
  30. 30.
    Yap CC, Digilio L, McMahon LP et al (2018) Degradation of dendritic cargos requires Rab7-dependent transport to somatic lysosomes. J Cell Biol 217(9):3141–3159.  https://doi.org/10.1083/jcb.201711039CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Mousa SA, Shaqura M, Khalefa BI et al (2013) Rab7 silencing prevents mu-opioid receptor lysosomal targeting and rescues opioid responsiveness to strengthen diabetic neuropathic pain therapy. Diabetes 62(4):1308–1319.  https://doi.org/10.2337/db12-0590CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Maday S, Holzbaur EL (2016) Compartment-specific regulation of autophagy in primary neurons. J Neurosci 36(22):5933–5945.  https://doi.org/10.1523/JNEUROSCI.4401-15.2016CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Cheng XT, Xie YX, Zhou B et al (2018) Characterization of LAMP1-labeled nondegradative lysosomal and endocytic compartments in neurons. J Cell Biol 217(9):3127–3139.  https://doi.org/10.1083/jcb.201711083CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Johnson DE, Ostrowski P, Jaumouille V et al (2016) The position of lysosomes within the cell determines their luminal pH. J Cell Biol 212(6):677–692.  https://doi.org/10.1083/jcb.201507112CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Goo MS, Sancho L, Slepak N et al (2017) Activity-dependent trafficking of lysosomes in dendrites and dendritic spines. J Cell Biol 216(8):2499–2513.  https://doi.org/10.1083/jcb.201704068CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Colacurcio DJ, Nixon RA (2016) Disorders of lysosomal acidification-the emerging role of v-ATPase in aging and neurodegenerative disease. Ageing Res Rev 32:75–88.  https://doi.org/10.1016/j.arr.2016.05.004CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Al-Hasani R, Bruchas MR (2011) Molecular mechanisms of opioid receptor-dependent signaling and behavior. Anesthesiology 115(6):1363–1381.  https://doi.org/10.1097/ALN.0b013e318238bba6CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Raehal KM, Bohn LM (2014) Beta-arrestins: regulatory role and therapeutic potential in opioid and cannabinoid receptor-mediated analgesia. Handb Exp Pharmacol 219:427–443.  https://doi.org/10.1007/978-3-642-41199-1_22CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Xu J, Lu Z, Narayan A et al (2017) Alternatively spliced mu opioid receptor C termini impact the diverse actions of morphine. J Clin Invest 127(4):1561–1573.  https://doi.org/10.1172/JCI88760CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Valentino RJ, Volkow ND (2018) Untangling the complexity of opioid receptor function. Neuropsychopharmacology 43(13):2514–2520.  https://doi.org/10.1038/s41386-018-0225-3CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Wang D, Berg DJ, Scherrer G (2018) Beware of undertow: opioid drugs generate additional waves of intracellular signaling. Neuron 98(5):870–872.  https://doi.org/10.1016/j.neuron.2018.05.035CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Stoeber M, Jullie D, Lobingier BT et al (2018) A genetically encoded biosensor reveals location bias of opioid drug action. Neuron 98(5):963–976. e965.  https://doi.org/10.1016/j.neuron.2018.04.021CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Civciristov S, Huang C, Liu B et al (2019) Ligand-dependent spatiotemporal signaling profiles of the mu-opioid receptor are controlled by distinct protein-interaction networks. J Biol Chem.  https://doi.org/10.1074/jbc.RA119.008685
  44. 44.
    Grimm C, Bartel K, Vollmar AM et al (2018) Endolysosomal cation channels and cancer-a link with great potential. Pharmaceuticals (Basel) 11(1).  https://doi.org/10.3390/ph11010004
  45. 45.
    Krogsaeter EK, Biel M, Wahl-Schott C et al (2019) The protein interaction networks of mucolipins and two-pore channels. Biochim Biophys Acta, Mol Cell Res 1866(7):1111–1123.  https://doi.org/10.1016/j.bbamcr.2018.10.020CrossRefGoogle Scholar
  46. 46.
    Grimm C, Chen CC, Wahl-Schott C et al (2017) Two-pore channels: catalyzers of endolysosomal transport and function. Front Pharmacol 8:45.  https://doi.org/10.3389/fphar.2017.00045CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Fernandez B, Fdez E, Gomez-Suaga P et al (2016) Iron overload causes endolysosomal deficits modulated by NAADP-regulated 2-pore channels and RAB7A. Autophagy 12(9):1487–1506.  https://doi.org/10.1080/15548627.2016.1190072CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Morgan AJ, Galione A (2007) NAADP induces pH changes in the lumen of acidic Ca2+ stores. Biochem J 402(2):301–310.  https://doi.org/10.1042/BJ20060759CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Pitt SJ, Lam AK, Rietdorf K et al (2014) Reconstituted human TPC1 is a proton-permeable ion channel and is activated by NAADP or Ca2+. Sci Signal 7(326):ra46.  https://doi.org/10.1126/scisignal.2004854CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Skjorringe T, Burkhart A, Johnsen KB et al (2015) Divalent metal transporter 1 (DMT1) in the brain: implications for a role in iron transport at the blood-brain barrier, and neuronal and glial pathology. Front Mol Neurosci 8:19.  https://doi.org/10.3389/fnmol.2015.00019CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Ingrassia R, Garavaglia B, Memo M (2019) DMT1 expression and iron levels at the crossroads between aging and neurodegeneration. Front Neurosci 13:575.  https://doi.org/10.3389/fnins.2019.00575CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Garrick MD, Kuo HC, Vargas F et al (2006) Comparison of mammalian cell lines expressing distinct isoforms of divalent metal transporter 1 in a tetracycline-regulated fashion. Biochem J 398(3):539–546.  https://doi.org/10.1042/BJ20051987CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Mackenzie B, Takanaga H, Hubert N et al (2007) Functional properties of multiple isoforms of human divalent metal-ion transporter 1 (DMT1). Biochem J 403(1):59–69.  https://doi.org/10.1042/BJ20061290CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Roth JA, Horbinski C, Feng L et al (2000) Differential localization of divalent metal transporter 1 with and without iron response element in rat PC12 and sympathetic neuronal cells. J Neurosci 20(20):7595–7601CrossRefGoogle Scholar
  55. 55.
    Gunshin H, Mackenzie B, Berger UV et al (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388(6641):482–488.  https://doi.org/10.1038/41343CrossRefPubMedGoogle Scholar
  56. 56.
    White RS, Bhattacharya AK, Chen Y (2016) Lysosomal iron modulates NMDA receptor-mediated excitation via small GTPase, Dexras1. Mol Brain 9:38.  https://doi.org/10.1186/s13041-016-0220-8CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Liu C, Zhang CW, Lo SQ et al (2018) S-nitrosylation of divalent metal transporter 1 enhances iron uptake to mediate loss of dopaminergic neurons and motoric deficit. J Neurosci 38(39):8364–8377.  https://doi.org/10.1523/JNEUROSCI.3262-17.2018CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Ferezou I, Hill EL, Cauli B et al (2007) Extensive overlap of mu-opioid and nicotinic sensitivity in cortical interneurons. Cereb Cortex 17(8):1948–1957.  https://doi.org/10.1093/cercor/bhl104CrossRefPubMedGoogle Scholar
  59. 59.
    Taki K, Kaneko T, Mizuno N (2000) A group of cortical interneurons expressing mu-opioid receptor-like immunoreactivity: a double immunofluorescence study in the rat cerebral cortex. Neuroscience 98(2):221–231.  https://doi.org/10.1016/s0306-4522(00)00124-xCrossRefPubMedGoogle Scholar
  60. 60.
    Magno L, Oliveira MG, Mucha M et al (2012) Multiple embryonic origins of nitric oxide synthase-expressing GABAergic neurons of the neocortex. Front Neural Circuits 6:65.  https://doi.org/10.3389/fncir.2012.00065CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Krook-Magnuson E, Luu L, Lee SH et al (2011) Ivy and neurogliaform interneurons are a major target of mu-opioid receptor modulation. J Neurosci 31(42):14,861–14,870.  https://doi.org/10.1523/JNEUROSCI.2269-11.2011CrossRefGoogle Scholar
  62. 62.
    Rodriguez-Munoz M, Garzon J (2013) Nitric oxide and zinc-mediated protein assemblies involved in mu opioid receptor signaling. Mol Neurobiol 48(3):769–782.  https://doi.org/10.1007/s12035-013-8465-zCrossRefPubMedGoogle Scholar
  63. 63.
    Huang L, Wyse BD, Williams CM et al (2019) Nitric oxide modulates mu-opioid receptor function in vitro. Clin Exp Pharmacol Physiol 46(7):676–685.  https://doi.org/10.1111/1440-1681.13091CrossRefPubMedGoogle Scholar
  64. 64.
    Someya E, Mori A, Sakamoto K et al (2017) Stimulation of mu-opioid receptors dilates retinal arterioles by neuronal nitric oxide synthase-derived nitric oxide in rats. Eur J Pharmacol 803:124–129.  https://doi.org/10.1016/j.ejphar.2017.03.043CrossRefPubMedGoogle Scholar
  65. 65.
    Liu C, Liang MC, Soong TW (2019) Nitric oxide, iron and neurodegeneration. Front Neurosci 13:114.  https://doi.org/10.3389/fnins.2019.00114CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Galaris D, Barbouti A, Pantopoulos K (2019) Iron homeostasis and oxidative stress: an intimate relationship. Biochim Biophys Acta, Mol Cell Res 1866(12):118535.  https://doi.org/10.1016/j.bbamcr.2019.118535CrossRefGoogle Scholar
  67. 67.
    Dixon SJ, Stockwell BR (2014) The role of iron and reactive oxygen species in cell death. Nat Chem Biol 10(1):9–17.  https://doi.org/10.1038/nchembio.1416CrossRefPubMedGoogle Scholar
  68. 68.
    Gao G, Li J, Zhang Y et al (2019) Cellular iron metabolism and regulation. Adv Exp Med Biol 1173:21–32.  https://doi.org/10.1007/978-981-13-9589-5_2CrossRefPubMedGoogle Scholar
  69. 69.
    Hentze MW, Muckenthaler MU, Galy B et al (2010) Two to tango: regulation of mammalian iron metabolism. Cell 142(1):24–38.  https://doi.org/10.1016/j.cell.2010.06.028CrossRefPubMedGoogle Scholar
  70. 70.
    Arosio P, Elia L, Poli M (2017) Ferritin, cellular iron storage and regulation. IUBMB Life 69(6):414–422.  https://doi.org/10.1002/iub.1621CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Chasteen ND, Harrison PM (1999) Mineralization in ferritin: an efficient means of iron storage. J Struct Biol 126(3):182–194.  https://doi.org/10.1006/jsbi.1999.4118CrossRefPubMedGoogle Scholar
  72. 72.
    Carmona U, Li L, Zhang L, Knez M (2014) Ferritin light-chain subunits: key elements for the electron transfer across the protein cage. Chem Commun (Camb) 50(97):15358–15361.  https://doi.org/10.1039/c4cc07996eCrossRefGoogle Scholar
  73. 73.
    Recalcati S, Invernizzi P, Arosio P et al (2008) New functions for an iron storage protein: the role of ferritin in immunity and autoimmunity. J Autoimmun 30(1–2):84–89.  https://doi.org/10.1016/j.jaut.2007.11.003CrossRefPubMedGoogle Scholar
  74. 74.
    Alkhateeb AA, Connor JR (2010) Nuclear ferritin: a new role for ferritin in cell biology. Biochim Biophys Acta 1800(8):793–797.  https://doi.org/10.1016/j.bbagen.2010.03.017CrossRefPubMedGoogle Scholar
  75. 75.
    Zhu C, Yao WL, Tan W et al (2017) SDF-1 and CXCR4 play an important role in adult SVZ lineage cell proliferation and differentiation. Brain Res 1657:223–231.  https://doi.org/10.1016/j.brainres.2016.06.011CrossRefPubMedGoogle Scholar
  76. 76.
    Kokovay E, Goderie S, Wang Y et al (2010) Adult SVZ lineage cells home to and leave the vascular niche via differential responses to SDF1/CXCR4 signaling. Cell Stem Cell 7(2):163–173.  https://doi.org/10.1016/j.stem.2010.05.019CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Patel JR, McCandless EE, Dorsey D et al (2010) CXCR4 promotes differentiation of oligodendrocyte progenitors and remyelination. Proc Natl Acad Sci U S A 107(24):11,062–11,067.  https://doi.org/10.1073/pnas.1006301107CrossRefGoogle Scholar
  78. 78.
    Guyon A (2014) CXCL12 chemokine and GABA neurotransmitter systems crosstalk and their putative roles. Front Cell Neurosci 5:115.  https://doi.org/10.3389/fncel.2014.00115CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Nicolai J, Burbassi S, Rubin J et al (2010) CXCL12 inhibits expression of the NMDA receptor’s NR2B subunit through a histone deacetylase-dependent pathway contributing to neuronal survival. Cell Death Dis 1:e33.  https://doi.org/10.1038/cddis.2010.10CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Guyon A, Nahon JL (2007) Multiple actions of the chemokine stromal cell-derived factor-1alpha on neuronal activity. J Mol Endocrinol 38(3):365–376.  https://doi.org/10.1677/JME-06-0013CrossRefPubMedGoogle Scholar
  81. 81.
    Khan MZ, Brandimarti R, Shimizu S et al (2008) The chemokine CXCL12 promotes survival of postmitotic neurons by regulating Rb protein. Cell Death Differ 15(10):1663–1672.  https://doi.org/10.1038/cdd.2008.95CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Meucci O, Fatatis A, Simen AA et al (1998) Chemokines regulate hippocampal neuronal signaling and gp120 neurotoxicity. Proc Natl Acad Sci U S A 95(24):14,500–14,505.  https://doi.org/10.1073/pnas.95.24.14500CrossRefGoogle Scholar
  83. 83.
    Khan MZ, Shimizu S, Patel JP et al (2005) Regulation of neuronal P53 activity by CXCR 4. Mol Cell Neurosci 30(1):58–66.  https://doi.org/10.1016/j.mcn.2005.05.007CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Berry KP, Nedivi E (2017) Spine dynamics: are they all the same? Neuron 96(1):43–55.  https://doi.org/10.1016/j.neuron.2017.08.008CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Hains AB, Vu MA, Maciejewski PK et al (2009) Inhibition of protein kinase C signaling protects prefrontal cortex dendritic spines and cognition from the effects of chronic stress. Proc Natl Acad Sci U S A 106(42):17,957–17,962.  https://doi.org/10.1073/pnas.0908563106CrossRefGoogle Scholar
  86. 86.
    Dumitriu D, Hao J, Hara Y et al (2010) Selective changes in thin spine density and morphology in monkey prefrontal cortex correlate with aging-related cognitive impairment. J Neurosci 30(22):7507–7515.  https://doi.org/10.1523/JNEUROSCI.6410-09.2010CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Motley SE, Grossman YS, Janssen WGM et al (2018) Selective loss of thin spines in area 7a of the primate intraparietal sulcus predicts age-related working memory impairment. J Neurosci 38(49):10,467–10,478.  https://doi.org/10.1523/JNEUROSCI.1234-18.2018CrossRefGoogle Scholar
  88. 88.
    Boros BD, Greathouse KM, Gentry EG et al (2017) Dendritic spines provide cognitive resilience against Alzheimer’s disease. Ann Neurol 82(4):602–614.  https://doi.org/10.1002/ana.25049CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Konopaske GT, Lange N, Coyle JT et al (2014) Prefrontal cortical dendritic spine pathology in schizophrenia and bipolar disorder. JAMA Psychiat 71(12):1323–1331.  https://doi.org/10.1001/jamapsychiatry.2014.1582CrossRefGoogle Scholar
  90. 90.
    Masliah E, Heaton RK, Marcotte TD et al (1997) Dendritic injury is a pathological substrate for human immunodeficiency virus-related cognitive disorders. HNRC Group. The HIV Neurobehavioral Research Center. Ann Neurol 42(6):963–972.  https://doi.org/10.1002/ana.410420618CrossRefPubMedGoogle Scholar
  91. 91.
    Everall IP, Heaton RK, Marcotte TD et al (1999) Cortical synaptic density is reduced in mild to moderate human immunodeficiency virus neurocognitive disorder. HNRC Group. HIV Neurobehavioral Research Center. Brain Pathol 9(2):209–217.  https://doi.org/10.1111/j.1750-3639.1999.tb00219.xCrossRefPubMedGoogle Scholar
  92. 92.
    Li R, Luo C, Mines M et al (2006) Chemokine CXCL12 induces binding of ferritin heavy chain to the chemokine receptor CXCR4, alters CXCR4 signaling, and induces phosphorylation and nuclear translocation of ferritin heavy chain. J Biol Chem 281(49):37,616–37,627.  https://doi.org/10.1074/jbc.M607266200CrossRefGoogle Scholar
  93. 93.
    Wilkinson N, Pantopoulos K (2014) The IRP/IRE system in vivo: insights from mouse models. Front Pharmacol 5:176.  https://doi.org/10.3389/fphar.2014.00176CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Zhang DL, Ghosh MC, Rouault TA (2014) The physiological functions of iron regulatory proteins in iron homeostasis—an update. Front Pharmacol 5:124.  https://doi.org/10.3389/fphar.2014.00124CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Sanchez M, Galy B, Schwanhaeusser B, Blake J, Bahr-Ivacevic T, Benes V, Selbach M, Muckenthaler MU, Hentze MW (2011) Iron regulatory protein-1 and -2: transcriptome-wide definition of binding mRNAs and shaping of the cellular proteome by iron regulatory proteins. Blood 118(22):e168–e179.  https://doi.org/10.1182/blood-2011-04-343541CrossRefPubMedGoogle Scholar
  96. 96.
    Hentze MW, Kuhn LC (1996) Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc Natl Acad Sci U S A 93(16):8175–8182.  https://doi.org/10.1073/pnas.93.16.8175CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Vashisht AA, Zumbrennen KB, Huang X et al (2009) Control of iron homeostasis by an iron-regulated ubiquitin ligase. Science 326(5953):718–721.  https://doi.org/10.1126/science.1176333CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Salahudeen AA, Thompson JW, Ruiz JC et al (2009) An E3 ligase possessing an iron-responsive hemerythrin domain is a regulator of iron homeostasis. Science 326(5953):722–726.  https://doi.org/10.1126/science.1176326CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Meyron-Holtz EG, Ghosh MC, Iwai K et al (2004) Genetic ablations of iron regulatory proteins 1 and 2 reveal why iron regulatory protein 2 dominates iron homeostasis. EMBO J 23(2):386–395.  https://doi.org/10.1038/sj.emboj.7600041CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Walden WE, Selezneva AI, Dupuy J et al (2006) Structure of dual function iron regulatory protein 1 complexed with ferritin IRE-RNA. Science 314(5807):1903–1908.  https://doi.org/10.1126/science.1133116CrossRefPubMedGoogle Scholar
  101. 101.
    Kato J, Kobune M, Ohkubo S et al (2007) Iron/IRP-1-dependent regulation of mRNA expression for transferrin receptor, DMT1 and ferritin during human erythroid differentiation. Exp Hematol 35(6):879–887.  https://doi.org/10.1016/j.exphem.2007.03.005CrossRefPubMedGoogle Scholar
  102. 102.
    Ke Y, Wu J, Leibold EA et al (1998) Loops and bulge/loops in iron-responsive element isoforms influence iron regulatory protein binding. Fine-tuning of mRNA regulation? J Biol Chem 273(37):23,637–23,640.  https://doi.org/10.1074/jbc.273.37.23637CrossRefGoogle Scholar
  103. 103.
    Kim S, Ponka P (2002) Nitric oxide-mediated modulation of iron regulatory proteins: implication for cellular iron homeostasis. Blood Cells Mol Dis 29(3):400–410.  https://doi.org/10.1006/bcmd.2002.0579CrossRefPubMedGoogle Scholar
  104. 104.
    Daba A, Koromilas AE, Pantopoulos K (2012) Alternative ferritin mRNA translation via internal initiation. RNA 18(3):547–556.  https://doi.org/10.1261/rna.029322.111CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Lee KM, Chen CJ, Shih SR (2017) Regulation mechanisms of viral IRES-driven translation. Trends Microbiol 25(7):546–561.  https://doi.org/10.1016/j.tim.2017.01.010CrossRefPubMedGoogle Scholar
  106. 106.
    Johnson AG, Grosely R, Petrov AN et al (2017) Dynamics of IRES-mediated translation. Philos Trans R Soc Lond Ser B Biol Sci 372(1716).  https://doi.org/10.1098/rstb.2016.0177
  107. 107.
    Lee PT, Chao PK, Ou LC et al (2014) Morphine drives internal ribosome entry site-mediated hnRNP K translation in neurons through opioid receptor-dependent signaling. Nucleic Acids Res 42(21):13,012–13,025.  https://doi.org/10.1093/nar/gku1016CrossRefGoogle Scholar
  108. 108.
    Song KY, Choi HS, Law PY et al (2017) Post-transcriptional regulation of the human mu-opioid receptor (MOR) by morphine-induced RNA binding proteins hnRNP K and PCBP1. J Cell Physiol 232(3):576–584.  https://doi.org/10.1002/jcp.25455CrossRefPubMedGoogle Scholar
  109. 109.
    Thomson AM, Cahill CM, Cho HH et al (2005) The acute box cis-element in human heavy ferritin mRNA 5′-untranslated region is a unique translation enhancer that binds poly(C)-binding proteins. J Biol Chem 280(34):30,032–30,045.  https://doi.org/10.1074/jbc.M502951200CrossRefGoogle Scholar
  110. 110.
    Philpott CC, Ryu MS, Frey A et al (2017) Cytosolic iron chaperones: proteins delivering iron cofactors in the cytosol of mammalian cells. J Biol Chem 292(31):12,764–12,771.  https://doi.org/10.1074/jbc.R117.791962CrossRefGoogle Scholar
  111. 111.
    Shi H, Bencze KZ, Stemmler TL et al (2008) A cytosolic iron chaperone that delivers iron to ferritin. Science 320(5880):1207–1210.  https://doi.org/10.1126/science.1157643CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Leidgens S, Bullough KZ, Shi H et al (2013) Each member of the poly-r(C)-binding protein 1 (PCBP) family exhibits iron chaperone activity toward ferritin. J Biol Chem 288(24):17,791–17,802.  https://doi.org/10.1074/jbc.M113.460253CrossRefGoogle Scholar
  113. 113.
    Yanatori I, Yasui Y, Tabuchi M et al (2014) Chaperone protein involved in transmembrane transport of iron. Biochem J 462(1):25–37.  https://doi.org/10.1042/BJ20140225CrossRefPubMedGoogle Scholar
  114. 114.
    Lane DJR, Ayton S, Bush AI (2018) Iron and Alzheimer’s disease: an update on emerging mechanisms. J Alzheimers Dis 64(s1):S379–S395.  https://doi.org/10.3233/JAD-179944CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Liu JL, Fan YG, Yang ZS et al (2018) Iron and Alzheimer’s disease: from pathogenesis to therapeutic implications. Front Neurosci 12:632.  https://doi.org/10.3389/fnins.2018.00632CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Sadigh-Eteghad S, Sabermarouf B, Majdi A et al (2015) Amyloid-beta: a crucial factor in Alzheimer’s disease. Med Princ Pract 24(1):1–10.  https://doi.org/10.1159/000369101CrossRefPubMedGoogle Scholar
  117. 117.
    Zhou ZD, Tan EK (2017) Iron regulatory protein (IRP)-iron responsive element (IRE) signaling pathway in human neurodegenerative diseases. Mol Neurodegener 12(1):75.  https://doi.org/10.1186/s13024-017-0218-4CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Rogers JT, Bush AI, Cho HH et al (2008) Iron and the translation of the amyloid precursor protein (APP) and ferritin mRNAs: riboregulation against neural oxidative damage in Alzheimer’s disease. Biochem Soc Trans 36(Pt 6):1282–1287.  https://doi.org/10.1042/BST0361282CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Rogers JT, Randall JD, Cahill CM et al (2002) An iron-responsive element type II in the 5′-untranslated region of the Alzheimer’s amyloid precursor protein transcript. J Biol Chem 277(47):45,518–45,528.  https://doi.org/10.1074/jbc.M207435200CrossRefGoogle Scholar
  120. 120.
    Beaudoin ME, Poirel VJ, Krushel LA (2008) Regulating amyloid precursor protein synthesis through an internal ribosomal entry site. Nucleic Acids Res 36(21):6835–6847.  https://doi.org/10.1093/nar/gkn792CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Cho HH, Cahill CM, Vanderburg CR et al (2010) Selective translational control of the Alzheimer amyloid precursor protein transcript by iron regulatory protein-1. J Biol Chem 285(41):31,217–31,232.  https://doi.org/10.1074/jbc.M110.149161CrossRefGoogle Scholar
  122. 122.
    Bandyopadhyay S, Huang X, Cho H et al (2006) Metal specificity of an iron-responsive element in Alzheimer’s APP mRNA 5′-untranslated region, tolerance of SH-SY5Y and H4 neural cells to desferrioxamine, clioquinol, VK-28, and a piperazine chelator. J Neural Transm Suppl 71:237–247.  https://doi.org/10.1007/978-3-211-33328-0_25CrossRefGoogle Scholar
  123. 123.
    Dlouhy AC, Bailey DK, Steimle BL et al (2019) Fluorescence resonance energy transfer links membrane ferroportin, hephaestin but not ferroportin, amyloid precursor protein complex with iron efflux. J Biol Chem 294(11):4202–4214.  https://doi.org/10.1074/jbc.RA118.005142CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Belaidi AA, Gunn AP, Wong BX et al (2018) Marked age-related changes in brain iron homeostasis in amyloid protein precursor knockout mice. Neurotherapeutics 15(4):1055–1062.  https://doi.org/10.1007/s13311-018-0656-xCrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Saloner R, Heaton RK, Campbell LM et al (2019) Effects of comorbidity burden and age on brain integrity in HIV. AIDS 33(7):1175–1185.  https://doi.org/10.1097/QAD.0000000000002192CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Soontornniyomkij V, Moore DJ, Gouaux B et al (2019) Associations of regional amyloid-beta plaque and phospho-tau pathology with biological factors and neuropsychological functioning among HIV-infected adults. J Neurovirol 25:741–753.  https://doi.org/10.1007/s13365-019-00761-yCrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Green DA, Masliah E, Vinters HV et al (2005) Brain deposition of beta-amyloid is a common pathologic feature in HIV positive patients. AIDS 19(4):407–411.  https://doi.org/10.1097/01.aids.0000161770.06158.5cCrossRefPubMedGoogle Scholar
  128. 128.
    Achim CL, Adame A, Dumaop W et al (2009) Increased accumulation of intraneuronal amyloid beta in HIV-infected patients. J Neuroimmune Pharmacol 4(2):190–199.  https://doi.org/10.1007/s11481-009-9152-8CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Ortega M, Ances BM (2014) Role of HIV in amyloid metabolism. J Neuroimmune Pharmacol 9(4):483–491.  https://doi.org/10.1007/s11481-014-9546-0CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Anthony IC, Norrby KE, Dingwall T (2010) Predisposition to accelerated Alzheimer-related changes in the brains of human immunodeficiency virus negative opiate abusers. Brain 133(Pt 12):3685–3698.  https://doi.org/10.1093/brain/awq263CrossRefPubMedGoogle Scholar
  131. 131.
    Kim J, Yoon JH, Kim YS (2013) HIV-1 tat interacts with and regulates the localization and processing of amyloid precursor protein. PLoS One 8(11):e77972.  https://doi.org/10.1371/journal.pone.0077972CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    DuRaine G, Wisner TW, Howard P et al (2017) Herpes simplex virus gE/gI and US9 promote both envelopment and sorting of virus particles in the cytoplasm of neurons, two processes that precede anterograde transport in axons. J Virol 91(11).  https://doi.org/10.1128/JVI.00050-17
  133. 133.
    Pedrazzi M, Nash B, Meucci O et al (2014) Molecular features contributing to virus-independent intracellular localization and dynamic behavior of the herpesvirus transport protein US9. PLoS One 9(8):e104634.  https://doi.org/10.1371/journal.pone.0104634CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Brideau AD, del Rio T, Wolffe EJ et al (1999) Intracellular trafficking and localization of the pseudorabies virus Us9 type II envelope protein to host and viral membranes. J Virol 73(5):4372–4384CrossRefGoogle Scholar
  135. 135.
    Brandimarti R, Hill GS, Geiger JD et al (2017) The lipid raft-dwelling protein US9 can be manipulated to target APP compartmentalization, APP processing, and neurodegenerative disease pathogenesis. Sci Rep 7(1):15,103.  https://doi.org/10.1038/s41598-017-15128-8CrossRefGoogle Scholar
  136. 136.
    Ehehalt R, Keller P, Haass C et al (2003) Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J Cell Biol 160(1):113–123.  https://doi.org/10.1083/jcb.200207113CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Vetrivel KS, Thinakaran G (2010) Membrane rafts in Alzheimer’s disease beta-amyloid production. Biochim Biophys Acta 1801(8):860–867.  https://doi.org/10.1016/j.bbalip.2010.03.007CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Lyman MG, Curanovic D, Enquist LW (2008) Targeting of pseudorabies virus structural proteins to axons requires association of the viral Us9 protein with lipid rafts. PLoS Pathog 4(5):e1000065.  https://doi.org/10.1371/journal.ppat.1000065CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2021

Authors and Affiliations

  1. 1.Department of Pharmacology & PhysiologyDrexel University College of MedicinePhiladelphiaUSA
  2. 2.Department of Pharmacy and BiotechnologyUniversity of BolognaBolognaItaly
  3. 3.Department of Microbiology & ImmunologyDrexel University College of MedicinePhiladelphiaUSA
  4. 4.Center for Neuroimmunology and CNS Therapeutics, Institute for Molecular Medicine and Infectious DiseaseDrexel University College of MedicinePhiladelphiaUSA

Personalised recommendations