Skip to main content

Vaccination with Messenger RNA: A Promising Alternative to DNA Vaccination

  • Protocol
  • First Online:
DNA Vaccines

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2197))

Abstract

The first proof-of-concept studies about the feasibility of genetic vaccines were published over three decades ago, opening the way for future development. The idea of nonviral antigen delivery had multiple advantages over the traditional live or inactivated pathogen-based vaccines, but a great deal of effort had to be invested to turn the idea of genetic vaccination into reality. Although early proof-of-concept studies were groundbreaking, they also showed that numerous aspects of genetic vaccines needed to be improved. Until the early 2000s, the vast majority of effort was invested into the development of DNA vaccines due to the potential issues of instability and low in vivo translatability of messenger RNA (mRNA). In recent years, numerous studies have demonstrated the outstanding abilities of mRNA to elicit potent immune responses against infectious pathogens and different types of cancer, making it a viable platform for vaccine development. Multiple mRNA vaccine platforms have been developed and evaluated in small and large animals and humans and the results seem to be promising. RNA-based vaccines have important advantages over other vaccine approaches including outstanding efficacy, safety, and the potential for rapid, inexpensive, and scalable production. There is a substantial investment by new mRNA companies into the development of mRNA therapeutics, particularly vaccines, increasing the number of basic and translational research publications and human clinical trials underway. This review gives a broad overview about genetic vaccines and mainly focuses on the past and present of mRNA vaccines along with the future directions to bring this potent vaccine platform closer to therapeutic use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization (2018) Immunization coverage. https://www.who.int/news-room/fact-sheets/detail/immunization-coverage

  2. Wolff JA, Malone RW, Williams P et al (1990) Direct gene transfer into mouse muscle in vivo. Science 247:1465–1468

    Article  CAS  PubMed  Google Scholar 

  3. Alarcon JB, Waine GW, McManus DP (1999) DNA vaccines: technology and application as anti-parasite and anti-microbial agents. Adv Parasitol 42:343–410

    Article  CAS  PubMed  Google Scholar 

  4. Smooker PM, Rainczuk A, Kennedy N et al (2004) DNA vaccines and their application against parasites--promise, limitations and potential solutions. Biotechnol Annu Rev 10:189–236

    Article  CAS  PubMed  Google Scholar 

  5. Pierini S, Perales-Linares R, Uribe-Herranz M et al (2017) Trial watch: DNA-based vaccines for oncological indications. Onco Targets Ther 6:e1398878

    Google Scholar 

  6. Suschak JJ, Williams JA, Schmaljohn CS (2017) Advancements in DNA vaccine vectors, non-mechanical delivery methods, and molecular adjuvants to increase immunogenicity. Hum Vaccin Immunother 13:2837–2848

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hobernik D, Bros M (2018) DNA vaccines-how far from clinical use? Int J Mol Sci 19:3605

    Article  PubMed Central  CAS  Google Scholar 

  8. Paoletti E, Lipinskas BR, Samsonoff C et al (1984) Construction of live vaccines using genetically engineered poxviruses: biological activity of vaccinia virus recombinants expressing the hepatitis B virus surface antigen and the herpes simplex virus glycoprotein D. Proc Natl Acad Sci U S A 81:193–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ulmer JB, Donnelly JJ, Parker SE et al (1993) Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259:1745–1749

    Article  CAS  PubMed  Google Scholar 

  10. Martinon F, Krishnan S, Lenzen G et al (1993) Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. Eur J Immunol 23:1719–1722

    Article  CAS  PubMed  Google Scholar 

  11. Fleischmann RD, Adams MD, White O et al (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512

    Article  CAS  PubMed  Google Scholar 

  12. Giuliani MM, Adu-Bobie J, Comanducci M et al (2006) A universal vaccine for serogroup B meningococcus. Proc Natl Acad Sci U S A 103:10834–10839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pardi N, Hogan MJ, Porter FW et al (2018) mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov 17:261–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Baiersdorfer M, Boros G, Muramatsu H et al (2019) A facile method for the removal of dsRNA contaminant from in vitro-transcribed mRNA. Mol Ther Nucleic Acids 15:26–35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Kariko K, Muramatsu H, Ludwig J et al (2011) Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res 39:e142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sahin U, Kariko K, Tureci O (2014) mRNA-based therapeutics--developing a new class of drugs. Nat Rev Drug Discov 13:759–780

    Article  CAS  PubMed  Google Scholar 

  17. Pardi N, Hogan MJ, Naradikian MS et al (2018) Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses. J Exp Med 215:1571–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kowalczyk DW, Ertl HC (1999) Immune responses to DNA vaccines. Cell Mol Life Sci 55:751–770

    Article  CAS  PubMed  Google Scholar 

  19. Tang DC, DeVit M, Johnston SA (1992) Genetic immunization is a simple method for eliciting an immune response. Nature 356:152–154

    Article  CAS  PubMed  Google Scholar 

  20. Xiang ZQ, Spitalnik S, Tran M et al (1994) Vaccination with a plasmid vector carrying the rabies virus glycoprotein gene induces protective immunity against rabies virus. Virology 199:132–140

    Article  CAS  PubMed  Google Scholar 

  21. Moore MW, Carbone FR, Bevan MJ (1988) Introduction of soluble protein into the class I pathway of antigen processing and presentation. Cell 54:777–785

    Article  CAS  PubMed  Google Scholar 

  22. Xu RH, Remakus S, Ma X et al (2010) Direct presentation is sufficient for an efficient anti-viral CD8+ T cell response. PLoS Pathog 6:e1000768

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Embgenbroich M, Burgdorf S (2018) Current concepts of antigen cross-presentation. Front Immunol 9:1643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Miller MA, Ganesan AP, Luckashenak N et al (2015) Endogenous antigen processing drives the primary CD4+ T cell response to influenza. Nat Med 21:1216–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sei JJ, Haskett S, Kaminsky LW et al (2015) Peptide-MHC-I from endogenous antigen outnumber those from exogenous antigen, irrespective of APC phenotype or activation. PLoS Pathog 11:e1004941

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Gett AV, Sallusto F, Lanzavecchia A et al (2003) T cell fitness determined by signal strength. Nat Immunol 4:355–360

    Article  CAS  PubMed  Google Scholar 

  27. Liu MA (2011) DNA vaccines: an historical perspective and view to the future. Immunol Rev 239:62–84

    Article  CAS  PubMed  Google Scholar 

  28. Fu TM, Ulmer JB, Caulfield MJ et al (1997) Priming of cytotoxic T lymphocytes by DNA vaccines: requirement for professional antigen presenting cells and evidence for antigen transfer from myocytes. Mol Med 3:362–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Elnekave M, Furmanov K, Nudel I et al (2010) Directly transfected langerin+ dermal dendritic cells potentiate CD8+ T cell responses following intradermal plasmid DNA immunization. J Immunol 185:3463–3471

    Article  CAS  PubMed  Google Scholar 

  30. Shirota H, Petrenko L, Hong C et al (2007) Potential of transfected muscle cells to contribute to DNA vaccine immunogenicity. J Immunol 179:329–336

    Article  CAS  PubMed  Google Scholar 

  31. Ljungman P (2012) Vaccination of immunocompromised patients. Clin Microbiol Infect 18(Suppl 5):93–99

    Article  PubMed  Google Scholar 

  32. Krammer F, Palese P (2015) Advances in the development of influenza virus vaccines. Nat Rev Drug Discov 14:167–182

    Article  CAS  PubMed  Google Scholar 

  33. Racaniello V (2010) Pandemic influenza vaccine was too late in 2009. http://www.virology.ws/2010/12/09/pandemic-influenza-vaccine-was-too-late-in-2009/

  34. Yewdell JW, Anton LC, Bennink JR (1996) Defective ribosomal products (DRiPs): a major source of antigenic peptides for MHC class I molecules? J Immunol 157:1823–1826

    Article  CAS  PubMed  Google Scholar 

  35. Weintraub A (2003) Immunology of bacterial polysaccharide antigens. Carbohydr Res 338:2539–2547

    Article  CAS  PubMed  Google Scholar 

  36. Kowalski PS, Rudra A, Miao L et al (2019) Delivering the messenger: advances in Technologies for Therapeutic mRNA delivery. Mol Ther 27:710–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wolff JA, Ludtke JJ, Acsadi G et al (1992) Long-term persistence of plasmid DNA and foreign gene expression in mouse muscle. Hum Mol Genet 1:363–369

    Article  CAS  PubMed  Google Scholar 

  38. Armengol G, Ruiz LM, Orduz S (2004) The injection of plasmid DNA in mouse muscle results in lifelong persistence of DNA, gene expression, and humoral response. Mol Biotechnol 27:109–118

    Article  CAS  PubMed  Google Scholar 

  39. Wang Z, Troilo PJ, Wang X et al (2004) Detection of integration of plasmid DNA into host genomic DNA following intramuscular injection and electroporation. Gene Ther 11:711–721

    Article  CAS  PubMed  Google Scholar 

  40. Deyle DR, Russell DW (2009) Adeno-associated virus vector integration. Curr Opin Mol Ther 11:442–447

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hacein-Bey-Abina S, von Kalle C, Schmidt M et al (2003) A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 348:255–256

    Article  PubMed  Google Scholar 

  42. Gura T (2002) Gene therapy and the germ line. Mol Ther 6:2–4

    Article  CAS  PubMed  Google Scholar 

  43. Schuettrumpf J, Liu JH, Couto LB et al (2006) Inadvertent germline transmission of AAV2 vector: findings in a rabbit model correlate with those in a human clinical trial. Mol Ther 13:1064–1073

    Article  CAS  PubMed  Google Scholar 

  44. Tejeda-Mansir A, Montesinos RM (2008) Upstream processing of plasmid DNA for vaccine and gene therapy applications. Recent Pat Biotechnol 2:156–172

    Article  CAS  PubMed  Google Scholar 

  45. Xenopoulos A, Pattnaik P (2014) Production and purification of plasmid DNA vaccines: is there scope for further innovation? Expert Rev Vaccines 13:1537–1551

    Article  CAS  PubMed  Google Scholar 

  46. Martin SA, Paoletti E, Moss B (1975) Purification of mRNA guanylyltransferase and mRNA (guanine-7-) methyltransferase from vaccinia virions. J Biol Chem 250:9322–9329

    Article  CAS  PubMed  Google Scholar 

  47. Stepinski J, Waddell C, Stolarski R et al (2001) Synthesis and properties of mRNAs containing the novel "anti-reverse" cap analogs 7-methyl(3'-O-methyl)GpppG and 7-methyl (3'-deoxy)GpppG. RNA 7:1486–1495

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Vaidyanathan S, Azizian KT, Haque A et al (2018) Uridine depletion and chemical modification increase Cas9 mRNA activity and reduce immunogenicity without HPLC purification. Mol Ther Nucleic Acids 12:530–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Brito LA, Kommareddy S, Maione D et al (2015) Self-amplifying mRNA vaccines. Adv Genet 89:179–233

    Article  CAS  PubMed  Google Scholar 

  50. Geall AJ, Verma A, Otten GR et al (2012) Nonviral delivery of self-amplifying RNA vaccines. Proc Natl Acad Sci U S A 109:14604–14609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang C, Maruggi G, Shan H et al (2019) Advances in mRNA vaccines for infectious diseases. Front Immunol 10:594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Conry RM, LoBuglio AF, Wright M et al (1995) Characterization of a messenger RNA polynucleotide vaccine vector. Cancer Res 55:1397–1400

    CAS  PubMed  Google Scholar 

  53. Qiu P, Ziegelhoffer P, Sun J et al (1996) Gene gun delivery of mRNA in situ results in efficient transgene expression and genetic immunization. Gene Ther 3:262–268

    CAS  PubMed  Google Scholar 

  54. Dileo J, Miller TE Jr, Chesnoy S et al (2003) Gene transfer to subdermal tissues via a new gene gun design. Hum Gene Ther 14:79–87

    Article  CAS  PubMed  Google Scholar 

  55. Steitz J, Britten CM, Wolfel T et al (2006) Effective induction of anti-melanoma immunity following genetic vaccination with synthetic mRNA coding for the fusion protein EGFP.TRP2. Cancer Immunol Immunother 55:246–253

    Article  CAS  PubMed  Google Scholar 

  56. Scheel B, Aulwurm S, Probst J et al (2006) Therapeutic anti-tumor immunity triggered by injections of immunostimulating single-stranded RNA. Eur J Immunol 36:2807–2816

    Article  CAS  PubMed  Google Scholar 

  57. Scheel B, Teufel R, Probst J et al (2005) Toll-like receptor-dependent activation of several human blood cell types by protamine-condensed mRNA. Eur J Immunol 35:1557–1566

    Article  CAS  PubMed  Google Scholar 

  58. Skold AE, van Beek JJ, Sittig SP et al (2015) Protamine-stabilized RNA as an ex vivo stimulant of primary human dendritic cell subsets. Cancer Immunol Immunother 64:1461–1473

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Hoerr I, Obst R, Rammensee HG et al (2000) In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies. Eur J Immunol 30:1–7

    Article  CAS  PubMed  Google Scholar 

  60. Weide B, Pascolo S, Scheel B et al (2009) Direct injection of protamine-protected mRNA: results of a phase 1/2 vaccination trial in metastatic melanoma patients. J Immunother 32:498–507

    Article  CAS  PubMed  Google Scholar 

  61. Fotin-Mleczek M, Duchardt KM, Lorenz C et al (2011) Messenger RNA-based vaccines with dual activity induce balanced TLR-7 dependent adaptive immune responses and provide antitumor activity. J Immunother 34:1–15

    Article  CAS  PubMed  Google Scholar 

  62. Schlake T, Thess A, Fotin-Mleczek M et al (2012) Developing mRNA-vaccine technologies. RNA Biol 9:1319–1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Johansson DX, Ljungberg K, Kakoulidou M et al (2012) Intradermal electroporation of naked replicon RNA elicits strong immune responses. PLoS One 7:e29732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kanasty R, Dorkin JR, Vegas A et al (2013) Delivery materials for siRNA therapeutics. Nat Mater 12:967–977

    Article  CAS  PubMed  Google Scholar 

  65. Pardi N, Tuyishime S, Muramatsu H et al (2015) Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. J Control Release 217:345–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Maruggi G, Zhang C, Li J et al (2019) mRNA as a transformative Technology for Vaccine Development to control infectious diseases. Mol Ther 27:757–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Guan S, Rosenecker J (2017) Nanotechnologies in delivery of mRNA therapeutics using nonviral vector-based delivery systems. Gene Ther 24:133–143

    Article  CAS  PubMed  Google Scholar 

  68. McNamara MA, Nair SK, Holl EK (2015) RNA-based vaccines in cancer immunotherapy. J Immunol Res 2015:794528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Liu MA (2019) A comparison of plasmid DNA and mRNA as vaccine technologies. Vaccines (Basel) 7:37

    Article  CAS  Google Scholar 

  70. Pastor F, Berraondo P, Etxeberria I et al (2018) An RNA toolbox for cancer immunotherapy. Nat Rev Drug Discov 17:751–767

    Article  CAS  PubMed  Google Scholar 

  71. Iavarone C, O'Hagan DT, Yu D et al (2017) Mechanism of action of mRNA-based vaccines. Expert Rev Vaccines 16:871–881

    Article  CAS  PubMed  Google Scholar 

  72. Gilboa E, Vieweg J (2004) Cancer immunotherapy with mRNA-transfected dendritic cells. Immunol Rev 199:251–263

    Article  CAS  PubMed  Google Scholar 

  73. Bonehill A, Van Nuffel AM, Corthals J et al (2009) Single-step antigen loading and activation of dendritic cells by mRNA electroporation for the purpose of therapeutic vaccination in melanoma patients. Clin Cancer Res 15:3366–3375

    Article  CAS  PubMed  Google Scholar 

  74. Caruso DA, Orme LM, Neale AM et al (2004) Results of a phase 1 study utilizing monocyte-derived dendritic cells pulsed with tumor RNA in children and young adults with brain cancer. Neuro-Oncology 6:236–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dannull J, Nair S, Su Z et al (2005) Enhancing the immunostimulatory function of dendritic cells by transfection with mRNA encoding OX40 ligand. Blood 105:3206–3213

    Article  CAS  PubMed  Google Scholar 

  76. Kyte JA, Kvalheim G, Aamdal S et al (2005) Preclinical full-scale evaluation of dendritic cells transfected with autologous tumor-mRNA for melanoma vaccination. Cancer Gene Ther 12:579–591

    Article  CAS  PubMed  Google Scholar 

  77. Nair SK, Morse M, Boczkowski D et al (2002) Induction of tumor-specific cytotoxic T lymphocytes in cancer patients by autologous tumor RNA-transfected dendritic cells. Ann Surg 235:540–549

    Article  PubMed  PubMed Central  Google Scholar 

  78. Schuurhuis DH, Verdijk P, Schreibelt G et al (2009) In situ expression of tumor antigens by messenger RNA-electroporated dendritic cells in lymph nodes of melanoma patients. Cancer Res 69:2927–2934

    Article  CAS  PubMed  Google Scholar 

  79. Su Z, Dannull J, Heiser A et al (2003) Immunological and clinical responses in metastatic renal cancer patients vaccinated with tumor RNA-transfected dendritic cells. Cancer Res 63:2127–2133

    CAS  PubMed  Google Scholar 

  80. Saxena M, Bhardwaj N (2018) Re-emergence of dendritic cell vaccines for cancer treatment. Trends Cancer 4:119–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Baar J (1999) Clinical applications of dendritic cell cancer vaccines. Oncologist 4:140–144

    Article  CAS  PubMed  Google Scholar 

  82. Kranz LM, Diken M, Haas H et al (2016) Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534:396–401

    Article  PubMed  CAS  Google Scholar 

  83. Boczkowski D, Nair SK, Snyder D et al (1996) Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J Exp Med 184:465–472

    Article  CAS  PubMed  Google Scholar 

  84. Heiser A, Coleman D, Dannull J et al (2002) Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J Clin Invest 109:409–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. De Keersmaecker B, Heirman C, Corthals J et al (2011) The combination of 4-1BBL and CD40L strongly enhances the capacity of dendritic cells to stimulate HIV-specific T cell responses. J Leukoc Biol 89:989–999

    Article  PubMed  CAS  Google Scholar 

  86. Aerts-Toegaert C, Heirman C, Tuyaerts S et al (2007) CD83 expression on dendritic cells and T cells: correlation with effective immune responses. Eur J Immunol 37:686–695

    Article  CAS  PubMed  Google Scholar 

  87. Grunebach F, Kayser K, Weck MM et al (2005) Cotransfection of dendritic cells with RNA coding for HER-2/neu and 4-1BBL increases the induction of tumor antigen specific cytotoxic T lymphocytes. Cancer Gene Ther 12:749–756

    Article  PubMed  CAS  Google Scholar 

  88. Bonehill A, Tuyaerts S, Van Nuffel AM et al (2008) Enhancing the T-cell stimulatory capacity of human dendritic cells by co-electroporation with CD40L, CD70 and constitutively active TLR4 encoding mRNA. Mol Ther 16:1170–1180

    Article  CAS  PubMed  Google Scholar 

  89. Wilgenhof S, Van Nuffel AM, Benteyn D et al (2013) A phase IB study on intravenous synthetic mRNA electroporated dendritic cell immunotherapy in pretreated advanced melanoma patients. Ann Oncol 24:2686–2693

    Article  CAS  PubMed  Google Scholar 

  90. Van Lint S, Renmans D, Broos K et al (2015) The ReNAissanCe of mRNA-based cancer therapy. Expert Rev Vaccines 14:235–251

    Article  PubMed  CAS  Google Scholar 

  91. Benteyn D, Heirman C, Bonehill A et al (2015) mRNA-based dendritic cell vaccines. Expert Rev Vaccines 14:161–176

    Article  CAS  PubMed  Google Scholar 

  92. Sahin U, Derhovanessian E, Miller M et al (2017) Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547:222–226

    Article  CAS  PubMed  Google Scholar 

  93. Routy JP, Boulassel MR, Yassine-Diab B et al (2010) Immunologic activity and safety of autologous HIV RNA-electroporated dendritic cells in HIV-1 infected patients receiving antiretroviral therapy. Clin Immunol 134:140–147

    Article  CAS  PubMed  Google Scholar 

  94. Van Gulck E, Vlieghe E, Vekemans M et al (2012) mRNA-based dendritic cell vaccination induces potent antiviral T-cell responses in HIV-1-infected patients. AIDS 26:F1–F12

    Article  PubMed  CAS  Google Scholar 

  95. Allard SD, De Keersmaecker B, de Goede AL et al (2012) A phase I/IIa immunotherapy trial of HIV-1-infected patients with tat, rev and Nef expressing dendritic cells followed by treatment interruption. Clin Immunol 142:252–268

    Article  CAS  PubMed  Google Scholar 

  96. Gandhi RT, Kwon DS, Macklin EA et al (2016) Immunization of HIV-1-infected persons with autologous dendritic cells transfected with mRNA encoding HIV-1 gag and Nef: results of a randomized, placebo-controlled clinical trial. J Acquir Immune Defic Syndr 71:246–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Jacobson JM, Routy JP, Welles S et al (2016) Dendritic cell immunotherapy for HIV-1 infection using autologous HIV-1 RNA: a randomized, double-blind, placebo-controlled clinical trial. J Acquir Immune Defic Syndr 72:31–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gay CL, DeBenedette MA, Tcherepanova IY et al (2018) Immunogenicity of AGS-004 dendritic cell therapy in patients treated during acute HIV infection. AIDS Res Hum Retrovir 34:111–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bogers WM, Oostermeijer H, Mooij P et al (2015) Potent immune responses in rhesus macaques induced by nonviral delivery of a self-amplifying RNA vaccine expressing HIV type 1 envelope with a cationic nanoemulsion. J Infect Dis 211:947–955

    Article  CAS  PubMed  Google Scholar 

  100. Pollard C, Rejman J, De Haes W et al (2013) Type I IFN counteracts the induction of antigen-specific immune responses by lipid-based delivery of mRNA vaccines. Mol Ther 21:251–259

    Article  CAS  PubMed  Google Scholar 

  101. Zhao M, Li M, Zhang Z et al (2016) Induction of HIV-1 gag specific immune responses by cationic micelles mediated delivery of gag mRNA. Drug Deliv 23:2596–2607

    Article  CAS  PubMed  Google Scholar 

  102. Li M, Zhao M, Fu Y et al (2016) Enhanced intranasal delivery of mRNA vaccine by overcoming the nasal epithelial barrier via intra- and paracellular pathways. J Control Release 228:9–19

    Article  CAS  PubMed  Google Scholar 

  103. Pardi N, LaBranche CC, Ferrari G et al (2019) Characterization of HIV-1 nucleoside-modified mRNA vaccines in rabbits and rhesus macaques. Mol Ther Nucleic Acids 15:36–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zost SJ, Parkhouse K, Gumina ME et al (2017) Contemporary H3N2 influenza viruses have a glycosylation site that alters binding of antibodies elicited by egg-adapted vaccine strains. Proc Natl Acad Sci U S A 114:12578–12583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wu NC, Zost SJ, Thompson AJ et al (2017) A structural explanation for the low effectiveness of the seasonal influenza H3N2 vaccine. PLoS Pathog 13:e1006682

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Hekele A, Bertholet S, Archer J et al (2013) Rapidly produced SAM((R)) vaccine against H7N9 influenza is immunogenic in mice. Emerg Microbes Infect 2:e52

    Article  PubMed  PubMed Central  Google Scholar 

  107. Petsch B, Schnee M, Vogel AB et al (2012) Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza a virus infection. Nat Biotechnol 30:1210–1216

    Article  CAS  PubMed  Google Scholar 

  108. Pardi N, Parkhouse K, Kirkpatrick E et al (2018) Nucleoside-modified mRNA immunization elicits influenza virus hemagglutinin stalk-specific antibodies. Nat Commun 9:3361

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Feldman RA, Fuhr R, Smolenov I et al (2019) mRNA vaccines against H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and well tolerated in healthy adults in phase 1 randomized clinical trials. Vaccine 37:3326–3334

    Article  CAS  PubMed  Google Scholar 

  110. Richner JM, Himansu S, Dowd KA et al (2017) Modified mRNA vaccines protect against Zika virus infection. Cell 168:1114–1125. e10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Pardi N, Hogan MJ, Pelc RS et al (2017) Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature 543:248–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Schnee M, Vogel AB, Voss D et al (2016) An mRNA vaccine encoding rabies virus glycoprotein induces protection against lethal infection in mice and correlates of protection in adult and newborn pigs. PLoS Negl Trop Dis 10:e0004746

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Alberer M, Gnad-Vogt U, Hong HS et al (2017) Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. Lancet 390:1511–1520

    Article  CAS  PubMed  Google Scholar 

  114. Lutz J, Lazzaro S, Habbeddine M et al (2017) Unmodified mRNA in LNPs constitutes a competitive technology for prophylactic vaccines. NPJ Vaccines 2:29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Lorenzi JC, Trombone AP, Rocha CD et al (2010) Intranasal vaccination with messenger RNA as a new approach in gene therapy: use against tuberculosis. BMC Biotechnol 10:77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Maruggi G, Chiarot E, Giovani C et al (2017) Immunogenicity and protective efficacy induced by self-amplifying mRNA vaccines encoding bacterial antigens. Vaccine 35:361–368

    Article  CAS  PubMed  Google Scholar 

  117. Awasthi S, Hook LM, Pardi N et al (2019) Nucleoside-modified mRNA encoding HSV-2 glycoproteins C, D, and E prevents clinical and subclinical genital herpes. Sci Immunol 4:eaaw7083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Chahal JS, Khan OF, Cooper CL et al (2016) Dendrimer-RNA nanoparticles generate protective immunity against lethal Ebola, H1N1 influenza, and toxoplasma gondii challenges with a single dose. Proc Natl Acad Sci U S A 113:E4133–E4142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. John S, Yuzhakov O, Woods A et al (2018) Multi-antigenic human cytomegalovirus mRNA vaccines that elicit potent humoral and cell-mediated immunity. Vaccine 36:1689–1699

    Article  CAS  PubMed  Google Scholar 

  120. Centers for Disease Control and Prevention (2019) Malaria. https://www.cdc.gov/malaria/malaria_worldwide/reduction/vaccine.html

  121. Baeza Garcia A, Siu E, Sun T et al (2018) Neutralization of the plasmodium-encoded MIF ortholog confers protective immunity against malaria infection. Nat Commun 9:2714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Duthie MS, Van Hoeven N, MacMillen Z et al (2018) Heterologous immunization with defined RNA and subunit vaccines enhances T cell responses that protect against Leishmania donovani. Front Immunol 9:2420

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Bahl K, Senn JJ, Yuzhakov O et al (2017) Preclinical and clinical demonstration of immunogenicity by mRNA vaccines against H10N8 and H7N9 influenza viruses. Mol Ther 25:1316–1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Liu MA, Ulmer JB (2005) Human clinical trials of plasmid DNA vaccines. Adv Genet 55:25–40

    Article  CAS  PubMed  Google Scholar 

  125. Hajj KAW, K.A. (2017) Tools for translation: Non-viral materials for therapeutic mRNA delivery. Nat Rev Mater 2

    Google Scholar 

  126. Hajj KA, Ball RL, Deluty SB et al (2019) Branched-tail lipid nanoparticles potently deliver mRNA in vivo due to enhanced ionization at endosomal pH. Small 15:e1805097

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank Michael J Hogan for valuable feedback on the manuscript. N.P. was supported by the National Institute of Allergy and Infectious Diseases (1R01AI146101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Pardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tombácz, I., Weissman, D., Pardi, N. (2021). Vaccination with Messenger RNA: A Promising Alternative to DNA Vaccination. In: Sousa, Â. (eds) DNA Vaccines. Methods in Molecular Biology, vol 2197. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0872-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0872-2_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0871-5

  • Online ISBN: 978-1-0716-0872-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics