Skip to main content

Infection-Induced Porcine Ex Vivo Corneal Wound Model to Study the Efficacy of Herpes Simplex Virus-1 Entry and Replication Inhibitors

  • Protocol
  • First Online:
Wound Regeneration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2193))

Abstract

Corneal infections by viruses and bacteria can result in ocular surface defects, ulcers, or wounds. Herpes simplex virus type-1 (HSV-1) is a human virus with global seroprevalence in the range of 60–90%. While the virus more commonly causes mucocutaneous lesions including ulcers on the face and mouth, it is also a leading cause of infection-associated blindness. In this chapter, we discuss an in-depth protocol required to evaluate corneal damage due to HSV-1 infection using porcine models of ex vivo infection. Our methods can be adapted to study similar infections caused by other viruses and bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liesegang TJ (2001) Herpes simplex virus epidemiology and ocular importance. Cornea 20(1):1–13

    Article  CAS  Google Scholar 

  2. Farooq AV, Shukla D (2012) Herpes simplex epithelial and stromal keratitis: an epidemiologic update. Surv Ophthalmol 57(5):448–462. https://doi.org/10.1016/j.survophthal.2012.01.005

    Article  PubMed  PubMed Central  Google Scholar 

  3. Farooq AV, Valyi-Nagy T, Shukla D (2010) Mediators and mechanisms of herpes simplex virus entry into ocular cells. Curr Eye Res 35(6):445–450. https://doi.org/10.3109/02713681003734841

    Article  PubMed  PubMed Central  Google Scholar 

  4. Farooq AV, Shah A, Shukla D (2010) The role of herpesviruses in ocular infections. Virus Adapt Treat 2(1):115–123

    CAS  Google Scholar 

  5. Xu F, Schillinger JA, Sternberg MR et al (2002) Seroprevalence and Coinfection with Herpes Simplex Virus Type 1 and Type 2 in the United States, 1988–1994. J Infect Dis 185(8):1019–1024. https://doi.org/10.1086/340041

    Article  PubMed  Google Scholar 

  6. Xu F, Sternberg MR, Kottiri BJ et al (2006) Trends in herpes simplex virus type 1 and type 2 seroprevalence in the United States. J Am Med Assoc 296(8):964–973. https://doi.org/10.1001/jama.296.8.964

    Article  CAS  Google Scholar 

  7. Koganti R, Yadavalli T, Shukla D (2019) Current and emerging therapies for ocular herpes simplex virus type-1 infections. Microorganisms 7(10):E429

    Article  Google Scholar 

  8. Lobo A, Agelidis AM, Shukla D (2019) Pathogenesis of herpes simplex keratitis: the host cell response and ocular surface sequelae to infection and inflammation. Ocular Surface 17(1):40–49

    Article  Google Scholar 

  9. Koujah L, Suryawanshi RK, Shukla D (2019) Pathological processes activated by herpes simplex virus-1 (HSV-1) infection in the cornea. Cell Mol Life Sci 76(3):405–419

    Article  CAS  Google Scholar 

  10. Lass JH, Langston RH, Foster CS et al (1984) Antiviral medications and corneal wound healing. Antivir Res 4(3):143–157

    Article  CAS  Google Scholar 

  11. Burns WH, Saral R, Santos GW et al (1982) Isolation and characterisation of resistant Herpes simplex virus after acyclovir therapy. Lancet 1(8269):421–423. https://doi.org/10.1016/s0140-6736(82)91620-8

    Article  CAS  PubMed  Google Scholar 

  12. Crumpacker CS, Schnipper LE, Marlowe SI et al (2010) Resistance to antiviral drugs of herpes simplex virus isolated from a patient treated with acyclovir. N Engl J Med 306(6):343–346

    Article  Google Scholar 

  13. Yildiz C, Ozsurekci Y, Gucer S et al (2013) Acute kidney injury due to acyclovir. CEN Case Rep 2(1):38–40. https://doi.org/10.1007/s13730-012-0035-0

    Article  PubMed  Google Scholar 

  14. Fleischer R, Johnson M (2010) Acyclovir nephrotoxicity: a case report highlighting the importance of prevention, detection, and treatment of acyclovir-induced nephropathy. Case Rep Med 2010:1–3. https://doi.org/10.1155/2010/602783

    Article  Google Scholar 

  15. Thakkar N, Jaishankar D, Agelidis A et al (2017) Cultured corneas show dendritic spread and restrict herpes simplex virus infection that is not observed with cultured corneal cells. Sci Rep 7:42559

    Article  CAS  Google Scholar 

  16. Heichel J, Wilhelm F, Kunert KS et al (2016) Topographic findings of the porcine cornea. Med Hypothesis Discov Innov Ophthalmol 5(4):125–131

    PubMed  PubMed Central  Google Scholar 

  17. Duggal N, Jaishankar D, Yadavalli T et al (2017) Zinc oxide tetrapods inhibit herpes simplex virus infection of cultured corneas. Mol Vis 23:26–38

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Yadavalli T, Agelidis A, Jaishankar D et al (2017) Targeting herpes simplex virus-1 gD by a DNA aptamer can be an effective new strategy to curb viral infection. Mol Ther Nucleic Acids 9:365–378

    Article  CAS  Google Scholar 

  19. Berger A, Preiser W (2002) Viral genome quantification as a tool for improving patient management: the example of HIV, HBV, HCV and CMV. J Antimicrob Chemother 49(5):713–721. https://doi.org/10.1093/jac/dkf050

    Article  CAS  PubMed  Google Scholar 

  20. Mackay IM, Arden KE, Nitsche A (2002) Real-time PCR in virology. Nucleic Acids Res 30(6):1292–1305

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the NIH (R01EY024710-05, R01EY029426) to D.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Shukla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yadavalli, T., Koganti, R., Shukla, D. (2021). Infection-Induced Porcine Ex Vivo Corneal Wound Model to Study the Efficacy of Herpes Simplex Virus-1 Entry and Replication Inhibitors. In: Das, H. (eds) Wound Regeneration. Methods in Molecular Biology, vol 2193. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0845-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0845-6_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0844-9

  • Online ISBN: 978-1-0716-0845-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics