Skip to main content

Identification of Putative Mitochondrial Protease Substrates

  • Protocol
  • First Online:
Mitochondrial Gene Expression

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2192))

Abstract

Mitochondrial proteases constitute a fundamental part of the organellar protein quality control system to ensure the timely removal of damaged or obsolete proteins. The analysis of proteases is often limited to the identification of bona fide substrates that are degraded in the presence and become more abundant in the absence of the respective protease. However, proteases in numerous organisms from bacteria to humans can process specific substrates to release shortened proteins with potentially altered activities. Here, we describe an adaptation of the substrate-trapping approach, as well as the N-terminal profiling protocol Terminal Amine Isotope Labeling of Substrates (TAILS) for the identification of bona fide substrates and mitochondrial proteins that undergo complete or partial proteolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Quirós P, Langer T, López-Otín C (2015) New roles for mitochondrial proteases in health, ageing and disease. Nat Rev Mol Cell Biol 16:345–359. https://doi.org/10.1038/nrm3984

    Article  CAS  PubMed  Google Scholar 

  2. Smith A, Robinson A (2015) MitoMiner v3.1, an update on the mitochondrial proteomics database. Nucleic Acids Res 44:D1258–D1261. https://doi.org/10.1093/nar/gkv1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Baker T, Sauer R (2012) ClpXP, an ATP-powered unfolding and protein-degradation machine. Biochim Biophys Acta Mol Cell Res 1823:15–28. https://doi.org/10.1016/j.bbamcr.2011.06.007

    Article  CAS  Google Scholar 

  4. Gur E, Sauer R (2008) Recognition of misfolded proteins by Lon, a AAA+ protease. Genes Dev 22:2267–2277. https://doi.org/10.1101/gad.1670908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Koppen M, Metodiev M, Casari G, Rugarli E, Langer T (2006) Variable and tissue-specific subunit composition of mitochondrial m-AAA protease complexes linked to hereditary spastic paraplegia. Mol Cell Biol 27:758–767. https://doi.org/10.1128/mcb.01470-06

    Article  PubMed  PubMed Central  Google Scholar 

  6. Graef M, Seewald G, Langer T (2007) Substrate recognition by AAA+ ATPases: distinct substrate binding modes in ATP-dependent protease Yme1 of the mitochondrial intermembrane space. Mol Cell Biol 27:2476–2485. https://doi.org/10.1128/mcb.01721-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Anand R, Wai T, Baker M, Kladt N, Schauss A, Rugarli E, Langer T (2014) Thei-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J Cell Biol 204:919–929. https://doi.org/10.1083/jcb.201308006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nolden M, Ehses S, Koppen M, Bernacchia A, Rugarli E, Langer T (2005) The m-AAA protease defective in hereditary spastic paraplegia controls ribosome assembly in mitochondria. Cell 123:277–289. https://doi.org/10.1016/j.cell.2005.08.003

    Article  CAS  PubMed  Google Scholar 

  9. Szczepanowska K, Maiti P, Kukat A, Hofsetz E, Nolte H, Senft K, Becker C, Ruzzenente B, Hornig-Do H, Wibom R, Wiesner R, Krüger M, Trifunovic A (2016) CLPP coordinates mitoribosomal assembly through the regulation of ERAL1 levels. EMBO J 35:2566–2583. https://doi.org/10.15252/embj.201694253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Matsushima Y, Goto Y, Kaguni L (2010) Mitochondrial Lon protease regulates mitochondrial DNA copy number and transcription by selective degradation of mitochondrial transcription factor A (TFAM). Proc Natl Acad Sci U S A 107:18410–18415. https://doi.org/10.1073/pnas.1008924107

    Article  PubMed  PubMed Central  Google Scholar 

  11. Vass R, Chien P (2013) Critical clamp loader processing by an essential AAA+ protease in Caulobacter crescentus. Proc Natl Acad Sci U S A 110:18138–18143. https://doi.org/10.1073/pnas.1311302110

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zurita Rendón O, Shoubridge E (2018) LONP1 is required for maturation of a subset of mitochondrial proteins, and its loss elicits an integrated stress response. Mol Cell Biol. https://doi.org/10.1128/mcb.00412-17

  13. Sen M, Maillard R, Nyquist K, Rodriguez-Aliaga P, Pressé S, Martin A, Bustamante C (2013) The ClpXP protease unfolds substrates using a constant rate of pulling but different gears. Cell 155:636–646. https://doi.org/10.1016/j.cell.2013.09.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lowth B, Kirstein-Miles J, Saiyed T, Brötz-Oesterhelt H, Morimoto R, Truscott K, Dougan D (2012) Substrate recognition and processing by a Walker B mutant of the human mitochondrial AAA+ protein CLPX. J Struct Biol 179:193–201. https://doi.org/10.1016/j.jsb.2012.06.001

    Article  CAS  PubMed  Google Scholar 

  15. Endo T, Mitsui S, Roise D (1995) Mitochondrial presequences can induce aggregation of unfolded proteins. FEBS Lett 359:93–96. https://doi.org/10.1016/0014-5793(95)00015-2

    Article  CAS  PubMed  Google Scholar 

  16. Hawlitschek G, Schneider H, Schmidt B, Tropschug M, Hartl F, Neupert W (1988) Mitochondrial protein import: identification of processing peptidase and of PEP, a processing enhancing protein. Cell 53:795–806. https://doi.org/10.1016/0092-8674(88)90096-7

    Article  CAS  PubMed  Google Scholar 

  17. Vögtle F, Prinz C, Kellermann J, Lottspeich F, Pfanner N, Meisinger C (2011) Mitochondrial protein turnover: role of the precursor intermediate peptidase Oct1 in protein stabilization. Mol Biol Cell 22:2135–2143. https://doi.org/10.1091/mbc.e11-02-0169

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rinschen M, Hoppe A, Grahammer F, Kann M, Völker L, Schurek E, Binz J, Höhne M, Demir F, Malisic M, Huber T, Kurschat C, Kizhakkedathu J, Schermer B, Huesgen P, Benzing T (2017) N-Degradomic analysis reveals a proteolytic network processing the podocyte cytoskeleton. J Am Soc Nephrol 28:2867–2878. https://doi.org/10.1681/asn.2016101119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Calvo S, Julien O, Clauser K, Shen H, Kamer K, Wells J, Mootha V (2017) Comparative analysis of mitochondrial N-termini from mouse, human, and yeast. Mol Cell Proteomics 16:512–523. https://doi.org/10.1074/mcp.m116.063818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Demir F, Niedermaier S, Kizhakkedathu JN, Huesgen PF (2017) Profiling of protein N-termini and their modifications in complex samples. Methods Mol Biol 1574:35–50

    Article  CAS  Google Scholar 

  21. Lange P, Huesgen P, Nguyen K, Overall C (2014) Annotating N termini for the Human Proteome Project: N termini and Nα-acetylation status differentiate stable cleaved protein species from degradation remnants in the human erythrocyte proteome. J Proteome Res 13:2028–2044. https://doi.org/10.1021/pr401191w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kleifeld O, Doucet A, Prudova A, auf dem Keller U, Gioia M, Kizhakkedathu J, Overall C (2011) Identifying and quantifying proteolytic events and the natural N terminome by terminal amine isotopic labeling of substrates. Nat Protoc 6:1578–1611. https://doi.org/10.1038/nprot.2011.382

    Article  CAS  PubMed  Google Scholar 

  23. Frezza C, Cipolat S, Scorrano L (2007) Organelle isolation: functional mitochondria from mouse liver, muscle and cultured filroblasts. Nat Protoc 2:287–295. https://doi.org/10.1038/nprot.2006.478

    Article  CAS  PubMed  Google Scholar 

  24. Kumar G (2018) Principle and method of silver staining of proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Methods Mol Biol 1853:231–236

    Article  CAS  Google Scholar 

  25. Tyanova S, Temu T, Cox J (2016) The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc 11:2301–2319. https://doi.org/10.1038/nprot.2016.136

    Article  CAS  PubMed  Google Scholar 

  26. Fortelny N, Yang S, Pavlidis P, Lange P, Overall C (2014) Proteome TopFIND 3.0 with TopFINDer and PathFINDer: database and analysis tools for the association of protein termini to pre- and post-translational events. Nucleic Acids Res 43:D290–D297. https://doi.org/10.1093/nar/gku1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gomez-Auli A, Hillebrand L, Biniossek M, Peters C, Reinheckel T, Schilling O (2016) Impact of cathepsin B on the interstitial fluid proteome of murine breast cancers. Biochimie 122:88–98. https://doi.org/10.1016/j.biochi.2015.10.009

    Article  CAS  PubMed  Google Scholar 

  28. Ritchie M, Diyagama D, Neilson J, van Laar R, Dobrovic A, Holloway A, Smyth G (2006) Journal search results - Cite This For Me. BMC Bioinformatics 7:261. https://doi.org/10.1186/1471-2105-7-261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Trifunovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hofsetz, E., Huesgen, P.F., Trifunovic, A. (2021). Identification of Putative Mitochondrial Protease Substrates. In: Minczuk, M., Rorbach, J. (eds) Mitochondrial Gene Expression. Methods in Molecular Biology, vol 2192. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0834-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0834-0_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0833-3

  • Online ISBN: 978-1-0716-0834-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics