Skip to main content

Leverage Large-Scale Biological Networks to Decipher the Genetic Basis of Human Diseases Using Machine Learning

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2190))

Abstract

A fundamental question in precision medicine is to quantitatively decode the genetic basis of complex human diseases, which will enable the development of predictive models of disease risks based on personal genome sequences. To account for the complex systems within different cellular contexts, large-scale regulatory networks are critical components to be integrated into the analysis. Based on the fast accumulation of multiomics and disease genetics data, advanced machine learning algorithms and efficient computational tools are becoming the driving force in predicting phenotypes from genotypes, identifying potential causal genetic variants, and revealing disease mechanisms. Here, we review the state-of-the-art methods for this topic and describe a computational pipeline that assembles a series of algorithms together to achieve improved disease genetics prediction through the delineation of regulatory circuitry step by step.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lander ES (2011) Initial impact of the sequencing of the human genome. Nature 470(7333):187–197. https://doi.org/10.1038/nature09792

    Article  CAS  PubMed  Google Scholar 

  2. Visscher PM, Wray NR, Zhang Q et al (2017) 10 years of GWAS discovery: biology, function, and translation. Am J Hum Genet 101(1):5–22. https://doi.org/10.1016/j.ajhg.2017.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tam V, Patel N, Turcotte M et al (2019) Benefits and limitations of genome-wide association studies. Nat Rev Genet 20(8):467–484. https://doi.org/10.1038/s41576-019-0127-1

    Article  CAS  PubMed  Google Scholar 

  4. Do C, Shearer A, Suzuki M et al (2017) Genetic-epigenetic interactions in cis: a major focus in the post-GWAS era. Genome Biol 18:120. https://doi.org/10.1186/s13059-017-1250-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gallagher MD, Chen-Plotkin AS (2018) The post-GWAS era: from association to function. Am J Hum Genet 102(5):717–730. https://doi.org/10.1016/j.ajhg.2018.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hawkins RD, Hon GC, Ren B et al (2010) Next-generation genomics: an integrative approach. Nat Rev Genet 11(7):476–486. https://doi.org/10.1038/nrg2795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Deplancke B, Alpern D, Gardeux V et al (2016) The genetics of transcription factor DNA binding variation. Cell 166(3):538–554. https://doi.org/10.1016/j.cell.2016.07.012

    Article  CAS  PubMed  Google Scholar 

  8. Watanabe K, Taskesen E, Bochoven A et al (2017) Functional mapping and annotation of genetic associations with FUMA. Nat Commun 8:1826. https://doi.org/10.1038/s41467-017-01261-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schaub MA, Boyle AP, Kundaje A et al (2012) Linking disease associations with regulatory information in the human genome. Genome Res 22(9):1748–1759. https://doi.org/10.1101/gr.136127.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shlyueva D, Stampfel G, Stark A et al (2014) Transcriptional enhancers: from properties to genome-wide predictions. Nat Rev Genet 15(4):272–286. https://doi.org/10.1038/nrg3682

    Article  CAS  PubMed  Google Scholar 

  11. Creyghton MP, Cheng AW, Wehstead GG et al (2010) Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A 107(50):21931–21936. https://doi.org/10.1073/pnas.1016071107

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kimura H (2013) Histone modifications for human epigenome analysis. J Hum Genet 58(7):439–445. https://doi.org/10.1038/jhg.2013.66

    Article  CAS  PubMed  Google Scholar 

  13. Lister R, Pelizzola M, Dowen RH et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462(7271):315–322. https://doi.org/10.1038/nature08514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhou VW, Goren A, Bernstein BE (2011) Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet 12(1):7–18. https://doi.org/10.1038/nrg2905

    Article  CAS  PubMed  Google Scholar 

  15. Schoenfelder S, Fraser P (2019) Long-range enhancer-promoter contacts in gene expression control. Nat Rev Genet 20(8):437–455. https://doi.org/10.1038/s41576-019-0128-0

    Article  CAS  PubMed  Google Scholar 

  16. Heintzman ND, Hon GC, Hawkins RD et al (2009) Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459(7243):108–112. https://doi.org/10.1038/nature07829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57–74. https://doi.org/10.1038/nature11247

    Article  CAS  Google Scholar 

  18. Roadmap Epigenomics Consortium (2015) Integrative analysis of 111 reference human epigenomes. Nature 518(7539):317–330. https://doi.org/10.1038/nature14248

    Article  CAS  PubMed Central  Google Scholar 

  19. Valencia AM, Kadoch C (2019) Chromatin regulatory mechanisms and therapeutic opportunities in cancer. Nat Cell Biol 21(2):152–161. https://doi.org/10.1038/s41556-018-0258-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim K, Jang K, Yang W et al (2016) Chromatin structure-based prediction of recurrent noncoding mutations in cancer. Nat Genet 48(11):1321–1326. https://doi.org/10.1038/ng.3682

    Article  CAS  PubMed  Google Scholar 

  21. Ernst J, Kellis M (2012) ChromHMM: automating chromatin-state discovery and characterization. Nat Methods 9(3):215–216. https://doi.org/10.1038/nmeth.1906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang JJ, Fritsche LG, Zhou X et al (2017) A scalable Bayesian method for integrating functional information in genome-wide association studies. Am J Hum Genet 101(3):404–416. https://doi.org/10.1016/j.ajhg.2017.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Keilwagen J, POSCH S, Grau J (2019) Accurate prediction of cell type-specific transcription factor binding. Genome Biol 20:9. https://doi.org/10.1186/s13059-018-1614-y

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lee D, Gorkin DU, Baker M et al (2015) A method to predict the impact of regulatory variants from DNA sequence. Nat Genet 47(8):955. https://doi.org/10.1038/ng.3331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. He B, Chen C, Teng L et al (2014) Global view of enhancer-promoter interactome in human cells. Proc Natl Acad Sci U S A 111(21):E2191–E2199. https://doi.org/10.1073/pnas.1320308111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gao L, Uzun Y, Gao P et al (2018) Identifying noncoding risk variants using disease-relevant gene regulatory networks. Nat Commun 9:702. https://doi.org/10.1038/s41467-018-03133-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lonsdale J, Thomas J, Salvatore M et al (2013) The genotype-tissue expression (GTEx) project. Nat Genet 45(6):580–585. https://doi.org/10.1038/ng.2653

    Article  CAS  Google Scholar 

  28. Kheradpour P, Kellis M (2014) Systematic discovery and characterization of regulatory motifs in ENCODE TF binding experiments. Nucleic Acids Res 42(5):2976–2987. https://doi.org/10.1093/nar/gkt1249

    Article  CAS  PubMed  Google Scholar 

  29. Wang YL, Song F, Zhang B et al (2018) The 3D genome browser: a web-based browser for visualizing 3D genome organization and long-range chromatin interactions. Genome Biol 19:151. https://doi.org/10.1186/s13059-018-1519-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kulakovskiy IV, Medvedeva YA, Schaefer U et al (2013) HOCOMOCO: a comprehensive collection of human transcription factor binding sites models. Nucleic Acids Res 41(D1):D195–D202. https://doi.org/10.1093/nar/gks1089

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Hao Wang, Jiaxin Yang and Jianrong Wang were supported by NIH R01GM131398. The authors would like to thank iCER at MSU for providing the high-performance computing facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianrong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wang, H., Yang, J., Wang, J. (2021). Leverage Large-Scale Biological Networks to Decipher the Genetic Basis of Human Diseases Using Machine Learning. In: Cartwright, H. (eds) Artificial Neural Networks. Methods in Molecular Biology, vol 2190. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0826-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0826-5_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0825-8

  • Online ISBN: 978-1-0716-0826-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics