Patch Clamp Electrophysiology pp 67-92 | Cite as
Electrophysiology on Channel-Forming Proteins in Artificial Lipid Bilayers: Next-Generation Instrumentation for Multiple Recordings in Parallel
- 292 Downloads
Abstract
Artificial lipid bilayers have been used for several decades to study channel-forming pores and ion channels in membranes. Until recently, the classical two-chamber setups have been primarily used for studying the biophysical properties of pore forming proteins. Within the last 10 years, instruments for automated lipid bilayer measurements have been developed and are now commercially available. This chapter focuses on protein purification and reconstitution of channel-forming proteins into lipid bilayers using a classic setup and on the commercially available systems, the Orbit mini and Orbit 16.
Key words
Reconstituted ion channels Artificial lipid bilayer Orbit mini Orbit 16 Protein purificationSupplementary material
The air bubble lipid bilayer formation technique on the Orbit mini. (MP4 56896 kb)
References
- 1.Miller C (1986) Ion channel reconstitution, 1st edn. Springer, New York, NYCrossRefGoogle Scholar
- 2.Mueller P, Rudin DO (1963) Induced excitability in reconstituted cell membrane structure. J Theor Biol 4:268–280. https://doi.org/10.1016/0022-5193(63)90006-7CrossRefGoogle Scholar
- 3.Mueller P, Rudin DO (1967) Action potential phenomena in experimental bimolecular lipid membranes. Nature 213:603–604. https://doi.org/10.1038/213603a0CrossRefGoogle Scholar
- 4.Mueller P, Rudin DO (1967) Development of K+-Na+ discrimination in experimental bimolecular lipid membranes by macrocyclic antibiotics. Biochem Biophys Res Commun 26:398–404. https://doi.org/10.1016/0006-291x(67)90559-1CrossRefGoogle Scholar
- 5.Bean RC, Shepherd WC, Chan H, Eichner J (1969) Discrete conductance fluctuations in lipid bilayer protein membranes. J Gen Physiol 53:741–757CrossRefGoogle Scholar
- 6.Ehrenstein G, Lecar H, Nossal R (1970) The nature of the negative resistance in bimolecular lipid membranes containing excitability-inducing material. J Gen Physiol 55:119–133. https://doi.org/10.1085/jgp.55.1.119CrossRefGoogle Scholar
- 7.Hladky SB, Haydon DA (1970) Discreteness of conductance change in bimolecular lipid membranes in the presence of certain antibiotics. Nature 225:451–453. https://doi.org/10.1038/225451a0CrossRefGoogle Scholar
- 8.Gordon LG, Haydon DA (1972) The unit conductance channel of alamethicin. Biochim Biophys Acta Biomembr 255:1014–1018. https://doi.org/10.1016/0005-2736(72)90415-4CrossRefGoogle Scholar
- 9.Eisenberg M, Hall JE, Mead C (1973) The nature of the voltage-dependent conductance induced by alamethicin in black lipid membranes. J Membr Biol 14:143–176CrossRefGoogle Scholar
- 10.Behrends JC (2012) Evolution of the ion channel concept: the historical perspective. Chem Rev 112:6218–6226. https://doi.org/10.1021/cr300349gCrossRefGoogle Scholar
- 11.Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer Associates, Inc, Sunderland, MAGoogle Scholar
- 12.Sakmann B, Neher E (1995) Single-channel recording. Spinger, New York, NYCrossRefGoogle Scholar
- 13.White SH (1986) The physical nature of planar bilayer membranes. In: Miller C (ed) Ion channel reconst., 1st edn. Springer, Boston, MA, pp 3–35CrossRefGoogle Scholar
- 14.Finkelstein A (1974) Bilayers: formation, measurements, and incorporation of components. Methods Enzymol 32:489–501. https://doi.org/10.1016/0076-6879(74)32049-6CrossRefGoogle Scholar
- 15.Ehrlich BE (1992) Planar lipid bilayers on patch pipettes: bilayer formation and ion channel incorporation. Methods Enzymol 207:463–470. https://doi.org/10.1016/0076-6879(92)07033-kCrossRefGoogle Scholar
- 16.Miller C (1983) First steps in the reconstruction of ionic channel functions in model membranes. In: Barker JL, McKelvy JF (eds) Curr. methods cell. neurobiol. Wiley, New York, NY, pp 1–37Google Scholar
- 17.Williams AJ (1994) An introduction to the methods available for ion channel reconstitution. In: Ogden D (ed) Microelectrode Tech Plymouth work. Handbook. Company of Biologists Limited, Cambridge, UK, pp 79–99Google Scholar
- 18.Mittermeier L, Demirkhanyan L, Stadlbauer B et al (2019) TRPM7 is the central gatekeeper of intestinal mineral absorption essential for postnatal survival. Proc Natl Acad Sci U S A 116:4706–4715. https://doi.org/10.1073/pnas.1810633116CrossRefGoogle Scholar
- 19.Baaken G, Sondermann M, Schlemmer C et al (2008) Planar microelectrode-cavity array for high-resolution and parallel electrical recording of membrane ionic currents. Lab Chip 8:938–944. https://doi.org/10.1039/b800431eCrossRefGoogle Scholar
- 20.Baaken G, Ankri N, Schuler A-K et al (2011) Nanopore-based single-molecule mass spectrometry on a lipid membrane microarray. ACS Nano 5:8080–8088. https://doi.org/10.1021/nn202670zCrossRefGoogle Scholar
- 21.Baaken G, Halimeh I, Bacri L et al (2015) High-resolution size-discrimination of single nonionic synthetic polymers with a highly charged biological nanopore. ACS Nano 9:6443–6449. https://doi.org/10.1021/acsnano.5b02096CrossRefGoogle Scholar
- 22.del Rio Martinez JM, Zaitseva E, Petersen S et al (2015) Automated formation of lipid membrane microarrays for ionic single-molecule sensing with protein nanopores. Small 11:119–125. https://doi.org/10.1002/smll.201402016CrossRefGoogle Scholar
- 23.Warner. https://www.warneronline.com/classic-bilayer-cups-chambers. Accessed 23 July 2019
- 24.Elements. https://elements-ic.com/blmkit-page/. Accessed 23 July 2019
- 25.Tanford C (1980) The hydrophobic effect: formation of micelles and biological membranes. Wiley Interscience, New York, NYGoogle Scholar
- 26.White SH, Petersen DC, Simon S, Yafuso M (1976) Formation of planar bilayer membranes from lipid monolayers. A critique. Biophys J 16:481–489. https://doi.org/10.1016/S0006-3495(76)85703-7CrossRefGoogle Scholar
- 27.Niles WD, Levis RA, Cohen FS (1988) Planar bilayer membranes made from phospholipid monolayers form by a thinning process. Biophys J 53:327–335. https://doi.org/10.1016/S0006-3495(88)83110-2CrossRefGoogle Scholar
- 28.He Y, Wang K, Yan N (2014) The recombinant expression systems for structure determination of eukaryotic membrane proteins. Protein Cell 5:658–672. https://doi.org/10.1007/s13238-014-0086-4CrossRefGoogle Scholar
- 29.Popot J-L (2014) Folding membrane proteins in vitro: a table and some comments. Arch Biochem Biophys 564:314–326. https://doi.org/10.1016/j.abb.2014.06.029CrossRefGoogle Scholar
- 30.Schwarzer TS, Hermann M, Krishnan S et al (2017) Preparative refolding of small monomeric outer membrane proteins. Protein Expr Purif 132:171–181. https://doi.org/10.1016/j.pep.2017.01.012CrossRefGoogle Scholar
- 31.Jensen HM, Eng T, Chubukov V et al (2017) Improving membrane protein expression and function using genomic edits. Sci Rep 7:13030. https://doi.org/10.1038/s41598-017-12901-7CrossRefGoogle Scholar
- 32.Ishchenko A, Abola EE, Cherezov V (2017) Crystallization of membrane proteins: an overview. In: Wlodawer A, Dauter Z, Jaskolski M (eds) Protein crystallogr, Methods mol. Biol, vol 1607. Humana, New York, NY, pp 117–141CrossRefGoogle Scholar
- 33.Kubicek J, Block H, Maertens B et al (2014) Expression and purification of membrane proteins. Methods Enzymol 541:117–140. https://doi.org/10.1016/B978-0-12-420119-4.00010-0CrossRefGoogle Scholar
- 34.Niederweis M, Ehrt S, Heinz C et al (1999) Cloning of the mspA gene encoding a porin from Mycobacterium smegmatis. Mol Microbiol 33:933–945. https://doi.org/10.1046/j.1365-2958.1999.01472.xCrossRefGoogle Scholar
- 35.Niederweis M (2003) Mycobacterial porins - new channel proteins in unique outer membranes. Mol Microbiol 49:1167–1177. https://doi.org/10.1046/j.1365-2958.2003.03662.xCrossRefGoogle Scholar
- 36.Faller M, Niederweis M, Schulz GE (2004) The structure of a mycobacterial outer-membrane channel. Science 303:1189–1192. https://doi.org/10.1126/science.1094114CrossRefGoogle Scholar
- 37.Derrington IM, Butler TZ, Collins MD et al (2010) Nanopore DNA sequencing with MspA. Proc Natl Acad Sci U S A 107:16060–16065. https://doi.org/10.1073/pnas.1001831107CrossRefGoogle Scholar
- 38.Manrao EA, Derrington IM, Laszlo AH et al (2012) Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat Biotechnol 30:349–353. https://doi.org/10.1038/nbt.2171CrossRefGoogle Scholar
- 39.Rues R-B, Henrich E, Boland C et al (2016) Cell-free production of membrane proteins in Escherichia coli lysates for functional and structural studies. In: Mus-Veteau I (ed) Heterologous expr. membr. proteins, Methods Mol. Biol, vol 1432. Humana, New York, NY, pp 1–21CrossRefGoogle Scholar
- 40.He W, Felderman M, Evans AC et al (2017) Cell-free production of a functional oligomeric form of a Chlamydia major outer-membrane protein (MOMP) for vaccine development. J Biol Chem 292:15121–15132. https://doi.org/10.1074/jbc.M117.784561CrossRefGoogle Scholar
- 41.Kovácsová G, Gustavsson E, Wang J et al (2015) Cell-free expression of a functional pore-only sodium channel. Protein Expr Purif 111:42–47. https://doi.org/10.1016/j.pep.2015.03.002CrossRefGoogle Scholar
- 42.Focke PJ, Hein C, Hoffmann B et al (2016) Combining in vitro folding with cell free protein synthesis for membrane protein expression. Biochemistry 55:4212–4219. https://doi.org/10.1021/acs.biochem.6b00488CrossRefGoogle Scholar
- 43.Renauld S, Cortes S, Bersch B et al (2017) Functional reconstitution of cell-free synthesized purified Kv channels. Biochim Biophys Acta Biomembr 1859:2373–2380. https://doi.org/10.1016/j.bbamem.2017.09.002CrossRefGoogle Scholar
- 44.Winterstein L-M, Kukovetz K, Rauh O et al (2018) Reconstitution and functional characterization of ion channels from nanodiscs in lipid bilayers. J Gen Physiol 150:jgp.201711904. https://doi.org/10.1085/jgp.201711904CrossRefGoogle Scholar
- 45.Henrich E, Peetz O, Hein C et al (2017) Analyzing native membrane protein assembly in nanodiscs by combined non-covalent mass spectrometry and synthetic biology. Elife 6:e20954. https://doi.org/10.7554/eLife.20954CrossRefGoogle Scholar
- 46.Foshag D, Henrich E, Hiller E et al (2018) The E. coli S30 lysate proteome: a prototype for cell-free protein production. New Biotechnol 40:245–260. https://doi.org/10.1016/j.nbt.2017.09.005CrossRefGoogle Scholar
- 47.Rues R-B, Gräwe A, Henrich E, Bernhard F (2017) Membrane protein production in E. coli lysates in presence of preassembled nanodiscs. In: Burgess-Brown N (ed) Heterologous gene expr. E. coli, Methods Mol. Biol, vol 1586. Humana, New York, NY, pp 291–312CrossRefGoogle Scholar
- 48.Banerjee S, Nimigean CM (2011) Non-vesicular transfer of membrane proteins from nanoparticles to lipid bilayers. J Gen Physiol 137:217–223. https://doi.org/10.1085/jgp.201010558CrossRefGoogle Scholar
- 49.Patriarchi T, Shen A, He W et al (2018) Nanodelivery of a functional membrane receptor to manipulate cellular phenotype. Sci Rep 8:3556. https://doi.org/10.1038/s41598-018-21863-3CrossRefGoogle Scholar
- 50.Reiter R, Zaitseva E, Baaken G et al. (2019) Activity of the Gramicidin A Ion Channel in a Lipid Membrane with Switchable Physical Properties. Langmuir 35:14959–14966. https://doi.org/10.1021/acs.langmuir.9b02752
- 51.Stockbridge RB, Tsai M-F (2015) Lipid reconstitution and recording of recombinant ion channels. Methods Enzymol 556:385–404. https://doi.org/10.1016/bs.mie.2014.12.028CrossRefGoogle Scholar
- 52.Knol J, Sjollema K, Poolman B (1998) Detergent-mediated reconstitution of membrane proteins. Biochemistry 37:16410–16415. https://doi.org/10.1021/bi981596uCrossRefGoogle Scholar
- 53.Woodbury DJ (1999) Nystatin/ergosterol method for reconstituting ion channels into planar lipid bilayers. Methods Enzymol 294:319–339. https://doi.org/10.1016/S0076-6879(99)94020-XCrossRefGoogle Scholar
- 54.de Planque M, de Planque M, Mendes G et al (2006) Controlled delivery of membrane proteins to artificial lipid bilayers by nystatin-ergosterol modulated vesicle fusion. IEE Proc Nanobiotechnol 153:21–30. https://doi.org/10.1049/ip-nbt:20050039CrossRefGoogle Scholar
- 55.Sakmann B, Neher E (2009) Single-channel recording, 2nd edn. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1229-9CrossRefGoogle Scholar
- 56.Ogden D (1994) Microelectrode techniques: the Plymouth workshop handbook, 2nd edn. Company of Biologists Limited, Cambridge, UKGoogle Scholar
- 57.Shermann-Gold R (2012) The Axon guide. https://mdc.custhelp.com/euf/assets/content/AxonGuide3rdedition.pdf. Accessed 23 July 2019
- 58.Forstater JH, Briggs K, Robertson JWF et al (2016) MOSAIC: a modular single-molecule analysis interface for decoding multistate nanopore data. Anal Chem 88:11900–11907. https://doi.org/10.1021/acs.analchem.6b03725CrossRefGoogle Scholar
- 59.MOSAIC. https://pages.nist.gov/mosaic/. Accessed 23 July 2019
- 60.Wyllie DJ, Behe P, Colquhoun D (1998) Single-channel activations and concentration jumps: comparison of recombinant NR1a/NR2A and NR1a/NR2D NMDA receptors [published erratum appears in J Physiol (Lond) 1998 Nov 1;512(Pt 3):939]. J Physiol 510:1–18CrossRefGoogle Scholar
- 61.Lape R, Colquhoun D, Sivilotti LG (2008) On the nature of partial agonism in the nicotinic receptor superfamily. Nature 454:722–727. https://doi.org/10.1038/nature07139CrossRefGoogle Scholar
- 62.Colquhoun D, Hawkes AG (2009) The principles of the stochastic interpretation of ion-channel mechanisms. In: Sakmann B, Neher E (eds) Single channel rec., 2nd edn. Springer Science+Business Media LLC, New York, NY, pp 397–482Google Scholar
- 63.Colquhoun D, Hawkes AG (1994) The interpretation of single channel recordings. In: Ogden DC (ed) Microelectrode tech. Plymouth work. Handbook., 2nd edn. Company of Biologists Limited, Cambridge, UK, pp 141–188Google Scholar