Advertisement

Electrophysiology on Channel-Forming Proteins in Artificial Lipid Bilayers: Next-Generation Instrumentation for Multiple Recordings in Parallel

  • Ekaterina Zaitseva
  • Alison ObergrussbergerEmail author
  • Conrad Weichbrodt
  • Mordjane Boukhet
  • Frank Bernhard
  • Christopher Hein
  • Gerhard Baaken
  • Niels Fertig
  • Jan C. Behrends
Protocol
  • 292 Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 2188)

Abstract

Artificial lipid bilayers have been used for several decades to study channel-forming pores and ion channels in membranes. Until recently, the classical two-chamber setups have been primarily used for studying the biophysical properties of pore forming proteins. Within the last 10 years, instruments for automated lipid bilayer measurements have been developed and are now commercially available. This chapter focuses on protein purification and reconstitution of channel-forming proteins into lipid bilayers using a classic setup and on the commercially available systems, the Orbit mini and Orbit 16.

Key words

Reconstituted ion channels Artificial lipid bilayer Orbit mini Orbit 16 Protein purification 

Supplementary material

Supplementary Video 1

The air bubble lipid bilayer formation technique on the Orbit mini. (MP4 56896 kb)

References

  1. 1.
    Miller C (1986) Ion channel reconstitution, 1st edn. Springer, New York, NYCrossRefGoogle Scholar
  2. 2.
    Mueller P, Rudin DO (1963) Induced excitability in reconstituted cell membrane structure. J Theor Biol 4:268–280.  https://doi.org/10.1016/0022-5193(63)90006-7CrossRefGoogle Scholar
  3. 3.
    Mueller P, Rudin DO (1967) Action potential phenomena in experimental bimolecular lipid membranes. Nature 213:603–604.  https://doi.org/10.1038/213603a0CrossRefGoogle Scholar
  4. 4.
    Mueller P, Rudin DO (1967) Development of K+-Na+ discrimination in experimental bimolecular lipid membranes by macrocyclic antibiotics. Biochem Biophys Res Commun 26:398–404.  https://doi.org/10.1016/0006-291x(67)90559-1CrossRefGoogle Scholar
  5. 5.
    Bean RC, Shepherd WC, Chan H, Eichner J (1969) Discrete conductance fluctuations in lipid bilayer protein membranes. J Gen Physiol 53:741–757CrossRefGoogle Scholar
  6. 6.
    Ehrenstein G, Lecar H, Nossal R (1970) The nature of the negative resistance in bimolecular lipid membranes containing excitability-inducing material. J Gen Physiol 55:119–133.  https://doi.org/10.1085/jgp.55.1.119CrossRefGoogle Scholar
  7. 7.
    Hladky SB, Haydon DA (1970) Discreteness of conductance change in bimolecular lipid membranes in the presence of certain antibiotics. Nature 225:451–453.  https://doi.org/10.1038/225451a0CrossRefGoogle Scholar
  8. 8.
    Gordon LG, Haydon DA (1972) The unit conductance channel of alamethicin. Biochim Biophys Acta Biomembr 255:1014–1018.  https://doi.org/10.1016/0005-2736(72)90415-4CrossRefGoogle Scholar
  9. 9.
    Eisenberg M, Hall JE, Mead C (1973) The nature of the voltage-dependent conductance induced by alamethicin in black lipid membranes. J Membr Biol 14:143–176CrossRefGoogle Scholar
  10. 10.
    Behrends JC (2012) Evolution of the ion channel concept: the historical perspective. Chem Rev 112:6218–6226.  https://doi.org/10.1021/cr300349gCrossRefGoogle Scholar
  11. 11.
    Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer Associates, Inc, Sunderland, MAGoogle Scholar
  12. 12.
    Sakmann B, Neher E (1995) Single-channel recording. Spinger, New York, NYCrossRefGoogle Scholar
  13. 13.
    White SH (1986) The physical nature of planar bilayer membranes. In: Miller C (ed) Ion channel reconst., 1st edn. Springer, Boston, MA, pp 3–35CrossRefGoogle Scholar
  14. 14.
    Finkelstein A (1974) Bilayers: formation, measurements, and incorporation of components. Methods Enzymol 32:489–501.  https://doi.org/10.1016/0076-6879(74)32049-6CrossRefGoogle Scholar
  15. 15.
    Ehrlich BE (1992) Planar lipid bilayers on patch pipettes: bilayer formation and ion channel incorporation. Methods Enzymol 207:463–470.  https://doi.org/10.1016/0076-6879(92)07033-kCrossRefGoogle Scholar
  16. 16.
    Miller C (1983) First steps in the reconstruction of ionic channel functions in model membranes. In: Barker JL, McKelvy JF (eds) Curr. methods cell. neurobiol. Wiley, New York, NY, pp 1–37Google Scholar
  17. 17.
    Williams AJ (1994) An introduction to the methods available for ion channel reconstitution. In: Ogden D (ed) Microelectrode Tech Plymouth work. Handbook. Company of Biologists Limited, Cambridge, UK, pp 79–99Google Scholar
  18. 18.
    Mittermeier L, Demirkhanyan L, Stadlbauer B et al (2019) TRPM7 is the central gatekeeper of intestinal mineral absorption essential for postnatal survival. Proc Natl Acad Sci U S A 116:4706–4715.  https://doi.org/10.1073/pnas.1810633116CrossRefGoogle Scholar
  19. 19.
    Baaken G, Sondermann M, Schlemmer C et al (2008) Planar microelectrode-cavity array for high-resolution and parallel electrical recording of membrane ionic currents. Lab Chip 8:938–944.  https://doi.org/10.1039/b800431eCrossRefGoogle Scholar
  20. 20.
    Baaken G, Ankri N, Schuler A-K et al (2011) Nanopore-based single-molecule mass spectrometry on a lipid membrane microarray. ACS Nano 5:8080–8088.  https://doi.org/10.1021/nn202670zCrossRefGoogle Scholar
  21. 21.
    Baaken G, Halimeh I, Bacri L et al (2015) High-resolution size-discrimination of single nonionic synthetic polymers with a highly charged biological nanopore. ACS Nano 9:6443–6449.  https://doi.org/10.1021/acsnano.5b02096CrossRefGoogle Scholar
  22. 22.
    del Rio Martinez JM, Zaitseva E, Petersen S et al (2015) Automated formation of lipid membrane microarrays for ionic single-molecule sensing with protein nanopores. Small 11:119–125.  https://doi.org/10.1002/smll.201402016CrossRefGoogle Scholar
  23. 23.
  24. 24.
    Elements. https://elements-ic.com/blmkit-page/. Accessed 23 July 2019
  25. 25.
    Tanford C (1980) The hydrophobic effect: formation of micelles and biological membranes. Wiley Interscience, New York, NYGoogle Scholar
  26. 26.
    White SH, Petersen DC, Simon S, Yafuso M (1976) Formation of planar bilayer membranes from lipid monolayers. A critique. Biophys J 16:481–489.  https://doi.org/10.1016/S0006-3495(76)85703-7CrossRefGoogle Scholar
  27. 27.
    Niles WD, Levis RA, Cohen FS (1988) Planar bilayer membranes made from phospholipid monolayers form by a thinning process. Biophys J 53:327–335.  https://doi.org/10.1016/S0006-3495(88)83110-2CrossRefGoogle Scholar
  28. 28.
    He Y, Wang K, Yan N (2014) The recombinant expression systems for structure determination of eukaryotic membrane proteins. Protein Cell 5:658–672.  https://doi.org/10.1007/s13238-014-0086-4CrossRefGoogle Scholar
  29. 29.
    Popot J-L (2014) Folding membrane proteins in vitro: a table and some comments. Arch Biochem Biophys 564:314–326.  https://doi.org/10.1016/j.abb.2014.06.029CrossRefGoogle Scholar
  30. 30.
    Schwarzer TS, Hermann M, Krishnan S et al (2017) Preparative refolding of small monomeric outer membrane proteins. Protein Expr Purif 132:171–181.  https://doi.org/10.1016/j.pep.2017.01.012CrossRefGoogle Scholar
  31. 31.
    Jensen HM, Eng T, Chubukov V et al (2017) Improving membrane protein expression and function using genomic edits. Sci Rep 7:13030.  https://doi.org/10.1038/s41598-017-12901-7CrossRefGoogle Scholar
  32. 32.
    Ishchenko A, Abola EE, Cherezov V (2017) Crystallization of membrane proteins: an overview. In: Wlodawer A, Dauter Z, Jaskolski M (eds) Protein crystallogr, Methods mol. Biol, vol 1607. Humana, New York, NY, pp 117–141CrossRefGoogle Scholar
  33. 33.
    Kubicek J, Block H, Maertens B et al (2014) Expression and purification of membrane proteins. Methods Enzymol 541:117–140.  https://doi.org/10.1016/B978-0-12-420119-4.00010-0CrossRefGoogle Scholar
  34. 34.
    Niederweis M, Ehrt S, Heinz C et al (1999) Cloning of the mspA gene encoding a porin from Mycobacterium smegmatis. Mol Microbiol 33:933–945.  https://doi.org/10.1046/j.1365-2958.1999.01472.xCrossRefGoogle Scholar
  35. 35.
    Niederweis M (2003) Mycobacterial porins - new channel proteins in unique outer membranes. Mol Microbiol 49:1167–1177.  https://doi.org/10.1046/j.1365-2958.2003.03662.xCrossRefGoogle Scholar
  36. 36.
    Faller M, Niederweis M, Schulz GE (2004) The structure of a mycobacterial outer-membrane channel. Science 303:1189–1192.  https://doi.org/10.1126/science.1094114CrossRefGoogle Scholar
  37. 37.
    Derrington IM, Butler TZ, Collins MD et al (2010) Nanopore DNA sequencing with MspA. Proc Natl Acad Sci U S A 107:16060–16065.  https://doi.org/10.1073/pnas.1001831107CrossRefGoogle Scholar
  38. 38.
    Manrao EA, Derrington IM, Laszlo AH et al (2012) Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat Biotechnol 30:349–353.  https://doi.org/10.1038/nbt.2171CrossRefGoogle Scholar
  39. 39.
    Rues R-B, Henrich E, Boland C et al (2016) Cell-free production of membrane proteins in Escherichia coli lysates for functional and structural studies. In: Mus-Veteau I (ed) Heterologous expr. membr. proteins, Methods Mol. Biol, vol 1432. Humana, New York, NY, pp 1–21CrossRefGoogle Scholar
  40. 40.
    He W, Felderman M, Evans AC et al (2017) Cell-free production of a functional oligomeric form of a Chlamydia major outer-membrane protein (MOMP) for vaccine development. J Biol Chem 292:15121–15132.  https://doi.org/10.1074/jbc.M117.784561CrossRefGoogle Scholar
  41. 41.
    Kovácsová G, Gustavsson E, Wang J et al (2015) Cell-free expression of a functional pore-only sodium channel. Protein Expr Purif 111:42–47.  https://doi.org/10.1016/j.pep.2015.03.002CrossRefGoogle Scholar
  42. 42.
    Focke PJ, Hein C, Hoffmann B et al (2016) Combining in vitro folding with cell free protein synthesis for membrane protein expression. Biochemistry 55:4212–4219.  https://doi.org/10.1021/acs.biochem.6b00488CrossRefGoogle Scholar
  43. 43.
    Renauld S, Cortes S, Bersch B et al (2017) Functional reconstitution of cell-free synthesized purified Kv channels. Biochim Biophys Acta Biomembr 1859:2373–2380.  https://doi.org/10.1016/j.bbamem.2017.09.002CrossRefGoogle Scholar
  44. 44.
    Winterstein L-M, Kukovetz K, Rauh O et al (2018) Reconstitution and functional characterization of ion channels from nanodiscs in lipid bilayers. J Gen Physiol 150:jgp.201711904.  https://doi.org/10.1085/jgp.201711904CrossRefGoogle Scholar
  45. 45.
    Henrich E, Peetz O, Hein C et al (2017) Analyzing native membrane protein assembly in nanodiscs by combined non-covalent mass spectrometry and synthetic biology. Elife 6:e20954.  https://doi.org/10.7554/eLife.20954CrossRefGoogle Scholar
  46. 46.
    Foshag D, Henrich E, Hiller E et al (2018) The E. coli S30 lysate proteome: a prototype for cell-free protein production. New Biotechnol 40:245–260.  https://doi.org/10.1016/j.nbt.2017.09.005CrossRefGoogle Scholar
  47. 47.
    Rues R-B, Gräwe A, Henrich E, Bernhard F (2017) Membrane protein production in E. coli lysates in presence of preassembled nanodiscs. In: Burgess-Brown N (ed) Heterologous gene expr. E. coli, Methods Mol. Biol, vol 1586. Humana, New York, NY, pp 291–312CrossRefGoogle Scholar
  48. 48.
    Banerjee S, Nimigean CM (2011) Non-vesicular transfer of membrane proteins from nanoparticles to lipid bilayers. J Gen Physiol 137:217–223.  https://doi.org/10.1085/jgp.201010558CrossRefGoogle Scholar
  49. 49.
    Patriarchi T, Shen A, He W et al (2018) Nanodelivery of a functional membrane receptor to manipulate cellular phenotype. Sci Rep 8:3556.  https://doi.org/10.1038/s41598-018-21863-3CrossRefGoogle Scholar
  50. 50.
    Reiter R, Zaitseva E, Baaken G et al. (2019) Activity of the Gramicidin A Ion Channel in a Lipid Membrane with Switchable Physical Properties. Langmuir 35:14959–14966.  https://doi.org/10.1021/acs.langmuir.9b02752
  51. 51.
    Stockbridge RB, Tsai M-F (2015) Lipid reconstitution and recording of recombinant ion channels. Methods Enzymol 556:385–404.  https://doi.org/10.1016/bs.mie.2014.12.028CrossRefGoogle Scholar
  52. 52.
    Knol J, Sjollema K, Poolman B (1998) Detergent-mediated reconstitution of membrane proteins. Biochemistry 37:16410–16415.  https://doi.org/10.1021/bi981596uCrossRefGoogle Scholar
  53. 53.
    Woodbury DJ (1999) Nystatin/ergosterol method for reconstituting ion channels into planar lipid bilayers. Methods Enzymol 294:319–339.  https://doi.org/10.1016/S0076-6879(99)94020-XCrossRefGoogle Scholar
  54. 54.
    de Planque M, de Planque M, Mendes G et al (2006) Controlled delivery of membrane proteins to artificial lipid bilayers by nystatin-ergosterol modulated vesicle fusion. IEE Proc Nanobiotechnol 153:21–30.  https://doi.org/10.1049/ip-nbt:20050039CrossRefGoogle Scholar
  55. 55.
    Sakmann B, Neher E (2009) Single-channel recording, 2nd edn. Springer, New York, NY.  https://doi.org/10.1007/978-1-4419-1229-9CrossRefGoogle Scholar
  56. 56.
    Ogden D (1994) Microelectrode techniques: the Plymouth workshop handbook, 2nd edn. Company of Biologists Limited, Cambridge, UKGoogle Scholar
  57. 57.
    Shermann-Gold R (2012) The Axon guide. https://mdc.custhelp.com/euf/assets/content/AxonGuide3rdedition.pdf. Accessed 23 July 2019
  58. 58.
    Forstater JH, Briggs K, Robertson JWF et al (2016) MOSAIC: a modular single-molecule analysis interface for decoding multistate nanopore data. Anal Chem 88:11900–11907.  https://doi.org/10.1021/acs.analchem.6b03725CrossRefGoogle Scholar
  59. 59.
    MOSAIC. https://pages.nist.gov/mosaic/. Accessed 23 July 2019
  60. 60.
    Wyllie DJ, Behe P, Colquhoun D (1998) Single-channel activations and concentration jumps: comparison of recombinant NR1a/NR2A and NR1a/NR2D NMDA receptors [published erratum appears in J Physiol (Lond) 1998 Nov 1;512(Pt 3):939]. J Physiol 510:1–18CrossRefGoogle Scholar
  61. 61.
    Lape R, Colquhoun D, Sivilotti LG (2008) On the nature of partial agonism in the nicotinic receptor superfamily. Nature 454:722–727.  https://doi.org/10.1038/nature07139CrossRefGoogle Scholar
  62. 62.
    Colquhoun D, Hawkes AG (2009) The principles of the stochastic interpretation of ion-channel mechanisms. In: Sakmann B, Neher E (eds) Single channel rec., 2nd edn. Springer Science+Business Media LLC, New York, NY, pp 397–482Google Scholar
  63. 63.
    Colquhoun D, Hawkes AG (1994) The interpretation of single channel recordings. In: Ogden DC (ed) Microelectrode tech. Plymouth work. Handbook., 2nd edn. Company of Biologists Limited, Cambridge, UK, pp 141–188Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2021

Authors and Affiliations

  • Ekaterina Zaitseva
    • 1
  • Alison Obergrussberger
    • 2
    Email author
  • Conrad Weichbrodt
    • 2
  • Mordjane Boukhet
    • 1
  • Frank Bernhard
    • 3
  • Christopher Hein
    • 3
  • Gerhard Baaken
    • 1
  • Niels Fertig
    • 2
  • Jan C. Behrends
    • 4
  1. 1.Ionera Technologies GmbHFreiburgGermany
  2. 2.Nanion Technologies GmbHMunichGermany
  3. 3.Institute of Biophysical Chemistry & Center for Biomolecular Magnetic ResonanceGoethe University FrankfurtFrankfurt am MainGermany
  4. 4.Laboratory for Membrane Physiology and Technology, Department of Physiology, Faculty of MedicineUniversity of FreiburgFreiburgGermany

Personalised recommendations