Skip to main content

Characterization of the Effect of Sphingolipid Accumulation on Membrane Compactness, Dipole Potential, and Mobility of Membrane Components

  • Protocol
  • First Online:
Lipid Rafts

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2187))

Abstract

Communication between cells and their environment is carried out through the plasma membrane including the action of most pharmaceutical drugs. Although such a communication typically involves specific binding of a messenger to a membrane receptor, the biophysical state of the lipid bilayer strongly influences the outcome of this interaction. Sphingolipids constitute an important part of the lipid membrane, and their mole fraction modifies the biophysical characteristics of the membrane. Here, we describe methods that can be used for measuring how sphingolipid accumulation alters the compactness, microviscosity, and dipole potential of the lipid bilayer and the mobility of membrane components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    Article  CAS  PubMed  Google Scholar 

  2. Nicolson GL (2014) The fluid-mosaic model of membrane structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochim Biophys Acta 1838:1451–1466

    Article  CAS  PubMed  Google Scholar 

  3. Nagy P, Mátyus L, Jenei A, Panyi G, Varga S, Matkó J, Szöllősi J, Gáspár R, Jovin TM, Damjanovich S (2001) Cell fusion experiments reveal distinctly different association characteristics of cell-surface receptors. J Cell Sci 114:4063–4071

    Article  CAS  PubMed  Google Scholar 

  4. Bernardino de la Serna J, Schutz GJ, Eggeling C, Cebecauer M (2016) There is no simple model of the plasma membrane organization. Front Cell Dev Biol 4:106

    Article  PubMed  PubMed Central  Google Scholar 

  5. Vereb G, Szöllősi J, Matkó J, Nagy P, Farkas T, Vígh L, Mátyus L, Waldmann TA, Damjanovich S (2003) Dynamic, yet structured: the cell membrane three decades after the Singer-Nicolson model. Proc Natl Acad Sci U S A 100:8053–8058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Saffman PG, Delbruck M (1975) Brownian motion in biological membranes. Proc Natl Acad Sci U S A 72:3111–3113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ritchie K, Iino R, Fujiwara T, Murase K, Kusumi A (2003) The fence and picket structure of the plasma membrane of live cells as revealed by single molecule techniques (review). Mol Membr Biol 20:13–18

    Article  CAS  PubMed  Google Scholar 

  8. Fujiwara T, Ritchie K, Murakoshi H, Jacobson K, Kusumi A (2002) Phospholipids undergo hop diffusion in compartmentalized cell membrane. J Cell Biol 157:1071–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schmick M, Bastiaens PIH (2014) The interdependence of membrane shape and cellular signal processing. Cell 156:1132–1138

    Article  CAS  PubMed  Google Scholar 

  10. Parmryd I, Onfelt B (2013) Consequences of membrane topography. FEBS J 280:2775–2784

    Article  CAS  PubMed  Google Scholar 

  11. Bancaud A, Huet S, Rabut G, Ellenberg J (2010) Fluorescence perturbation techniques to study mobility and molecular dynamics of proteins in live cells: FRAP, photoactivation, photoconversion, and FLIP. Cold Spring Harb Protoc 2010:pdb top90

    Article  PubMed  Google Scholar 

  12. Machan R, Foo YH, Wohland T (2016) On the equivalence of FCS and FRAP: simultaneous lipid membrane measurements. Biophys J 111:152–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lagerholm BC, Andrade DM, Clausen MP, Eggeling C (2017) Convergence of lateral dynamic measurements in the plasma membrane of live cells from single particle tracking and STED-FCS. J Phys D Appl Phys 50:063001

    Article  PubMed  PubMed Central  Google Scholar 

  14. Escriba PV, Gonzalez-Ros JM, Goni FM, Kinnunen PK, Vigh L, Sanchez-Magraner L, Fernandez AM, Busquets X, Horvath I, Barcelo-Coblijn G (2008) Membranes: a meeting point for lipids, proteins and therapies. J Cell Mol Med 12:829–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schmid F (2017) Physical mechanisms of micro- and nanodomain formation in multicomponent lipid membranes. Biochim Biophys Acta Biomembr 1859:509–528

    Article  CAS  PubMed  Google Scholar 

  16. Brewster R, Safran SA (2010) Line active hybrid lipids determine domain size in phase separation of saturated and unsaturated lipids. Biophys J 98:L21–L23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sevcsik E, Schütz GJ (2016) With or without rafts? Alternative views on cell membranes. BioEssays 38:129–139

    Article  CAS  PubMed  Google Scholar 

  18. Jameson DM, Ross JA (2010) Fluorescence polarization/anisotropy in diagnostics and imaging. Chem Rev 110:2685–2708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. do Canto AM, Robalo JR, Santos PD, Carvalho AJ, Ramalho JP, Loura LM (2016) Diphenylhexatriene membrane probes DPH and TMA-DPH: a comparative molecular dynamics simulation study. Biochim Biophys Acta 1858:2647–2661

    Article  PubMed  Google Scholar 

  20. Disalvo EA (2015) Membrane hydration: a hint to a new model for biomembranes. Subcell Biochem 71:1–16

    Article  CAS  PubMed  Google Scholar 

  21. Parasassi T, De Stasio G, Ravagnan G, Rusch RM, Gratton E (1991) Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of Laurdan fluorescence. Biophys J 60:179–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bagatolli LA, Gratton E (1999) Two-photon fluorescence microscopy observation of shape changes at the phase transition in phospholipid giant unilamellar vesicles. Biophys J 77:2090–2101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gaus K, Zech T, Harder T (2006) Visualizing membrane microdomains by Laurdan 2-photon microscopy. Mol Membr Biol 23:41–48

    Article  CAS  PubMed  Google Scholar 

  24. Kwiatek JM, Owen DM, Abu-Siniyeh A, Yan P, Loew LM, Gaus K (2013) Characterization of a new series of fluorescent probes for imaging membrane order. PLoS One 8:e52960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. O’Shea P (2003) Intermolecular interactions with/within cell membranes and the trinity of membrane potentials: kinetics and imaging. Biochem Soc Trans 31:990–996

    Article  PubMed  Google Scholar 

  26. Kovács T, Batta G, Hajdu T, Szabó A, Váradi T, Zákány F, Csomós I, Szöllősi J, Nagy P (2016) The dipole potential modifies the clustering and ligand binding affinity of ErbB proteins and their signaling efficiency. Sci Rep 6:35850

    Article  PubMed  PubMed Central  Google Scholar 

  27. Clarke RJ, Kane DJ (1997) Optical detection of membrane dipole potential: avoidance of fluidity and dye-induced effects. Biochim Biophys Acta 1323:223–239

    Article  CAS  PubMed  Google Scholar 

  28. Shynkar VV, Klymchenko AS, Duportail G, Demchenko AP, Mely Y (2005) Two-color fluorescent probes for imaging the dipole potential of cell plasma membranes. Biochim Biophys Acta 1712:128–136

    Article  CAS  PubMed  Google Scholar 

  29. Batta G, Soltész L, Kovács T, Bozó T, Meszár Z, Kellermayer M, Szöllősi J, Nagy P (2018) Alterations in the properties of the cell membrane due to glycosphingolipid accumulation in a model of Gaucher disease. Sci Rep 8:157

    Article  PubMed  PubMed Central  Google Scholar 

  30. Butters TD (2007) Gaucher disease. Curr Opin Chem Biol 11:412–418

    Article  CAS  PubMed  Google Scholar 

  31. Hein LK, Meikle PJ, Hopwood JJ, Fuller M (2007) Secondary sphingolipid accumulation in a macrophage model of Gaucher disease. Mol Genet Metab 92:336–345

    Article  CAS  PubMed  Google Scholar 

  32. Soumpasis DM (1983) Theoretical analysis of fluorescence photobleaching recovery experiments. Biophys J 41:95–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ellenberg J, Siggia ED, Moreira JE, Smith CL, Presley JF, Worman HJ, Lippincott-Schwartz J (1997) Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosis. J Cell Biol 138:1193–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Szendi-Szatmári T, Szabó A, Szöllősi J, Nagy P (2019) Reducing the detrimental effects of saturation phenomena in FRET microscopy. Anal Chem 91:6378–6382

    Article  PubMed  Google Scholar 

  35. Tsien RY, Ernst L, Waggoner A (2006) Fluorophores for confocal microscopy: photophysics and photochemistry. In: Pawley JB (ed) Handbook of biological confocal microscopy. Springer, New York, pp 338–352

    Chapter  Google Scholar 

  36. Gross E, Bedlack RS Jr, Loew LM (1994) Dual-wavelength ratiometric fluorescence measurement of the membrane dipole potential. Biophys J 67:208–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lippincott-Schwartz J, Altan-Bonnet N, Patterson GH (2003) Photobleaching and photoactivation: following protein dynamics in living cells. Nat Cell Biol:S7–S14

    Google Scholar 

  38. Schram V, Tocanne JF, Lopez A (1994) Influence of obstacles on lipid lateral diffusion: computer simulation of FRAP experiments and application to proteoliposomes and biomembranes. Eur Biophys J 23:337–348

    Article  CAS  PubMed  Google Scholar 

  39. Yechiel E, Edidin M (1987) Micrometer-scale domains in fibroblast plasma membranes. J Cell Biol 105:755–760

    Article  CAS  PubMed  Google Scholar 

  40. Robinson D, Besley NA, O’Shea P, Hirst JD (2011) Di-8-ANEPPS emission spectra in phospholipid/cholesterol membranes: a theoretical study. J Phys Chem B 115:4160–4167

    Article  CAS  PubMed  Google Scholar 

  41. Demchenko AP, Mely Y, Duportail G, Klymchenko AS (2009) Monitoring biophysical properties of lipid membranes by environment-sensitive fluorescent probes. Biophys J 96:3461–3470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lakowicz JR (2006) Fluorescence anisotropy. In: Principles of fluorescence spectroscopy. Springer, New York, pp 353–382

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by research grants from the National Research, Development and Innovation Office, Hungary (K120302, GINOP-2.3.2-15-2016-00020, GINOP-2.3.2-15-2016-00044, EFOP-3.6.3-VEKOP-16-2017-00009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Nagy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Batta, G., Hajdu, T., Nagy, P. (2021). Characterization of the Effect of Sphingolipid Accumulation on Membrane Compactness, Dipole Potential, and Mobility of Membrane Components. In: Bieberich, E. (eds) Lipid Rafts. Methods in Molecular Biology, vol 2187. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0814-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0814-2_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0813-5

  • Online ISBN: 978-1-0716-0814-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics