Skip to main content

Simulation of pH-Dependent, Loop-Based Membrane Protein Gating Using Pretzel

  • Protocol
  • First Online:
Nanopore Technology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2186))

  • 1004 Accesses

Abstract

Bacterial porins often exhibit ion conductance and gating behavior which can be modulated by pH. However, the underlying control mechanism of gating is often complex, and direct inspection of the protein structure is generally insufficient for full mechanistic understanding. Here we describe Pretzel, a computational framework that can effectively model loop-based gating events in membrane proteins. Our method combines Monte Carlo conformational sampling, structure clustering, ensemble energy evaluation, and a topological gating criterion to model the equilibrium gating state under the pH environment of interest. We discuss details of applying Pretzel to the porin outer membrane protein G (OmpG).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yildiz Ö, Vinothkumar KR, Goswami P, Kühlbrandt W (2006) Structure of the monomeric outer-membrane porin OmpG in the open and closed conformation. EMBO J 25:3702–3713

    Article  CAS  Google Scholar 

  2. Chen M, Khalid S, Sansom MS, Bayley H (2008) Outer membrane protein G: Engineering a quiet pore for biosensing. Proc Natl Acad Sci USA 105:6272–6277

    Article  CAS  Google Scholar 

  3. Fahie M, Yang B, Mullis M, Holden MA, Chen M (2015) Selective detection of protein homologues in serum using an OmpG nanopore. Anal Chem 87:11143–11149

    Article  CAS  Google Scholar 

  4. Fahie M, Chen M (2015) Electrostatic interactions between OmpG nanopore and analyte protein surface can distinguish between glycosylated isoforms. J Phys Chem B 119:10198–10206

    Article  CAS  Google Scholar 

  5. Perez-Rathke A, Fahie MA, Chisholm C, Liang J, Chen M (2018) Mechanism of OmpG pH-dependent gating from loop ensemble and single channel studies. J Am Chem Soc 140:1105–1115

    Article  CAS  Google Scholar 

  6. Lomize MA, Pogozheva ID, Joo H, Mosberg HI, Lomize AL (2012) OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res 40:D370–D376

    Article  CAS  Google Scholar 

  7. Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29:1859–1865

    Article  CAS  Google Scholar 

  8. Tian W, Chen C, Lei X, Zhao J, Liang J (2018) CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res 46:W363–W367

    Article  CAS  Google Scholar 

  9. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  Google Scholar 

  10. Olsson MHM, Søndergaard CR, Rostkowski M, Jensen JH (2011) PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J Chem Theory Comput 7:525–537

    Article  CAS  Google Scholar 

  11. Tang K, Zhang J, Liang J (2014) Fast protein loop sampling and structure prediction using distance-guided sequential chain-growth Monte Carlo method. PLoS Comput Biol 10:e1003539

    Article  Google Scholar 

  12. Tang K, Wong SW, Liu JS, Zhang J, Liang J (2015) Conformational sampling and structure prediction of multiple interacting loops in soluble and β-barrel membrane proteins using multi-loop distance-guided chain-growth Monte Carlo method. Bioinformatics 31:2646–2652

    Article  CAS  Google Scholar 

  13. Zhang X, Furtlehner C, Sebag M (2008) Data streaming with affinity propagation. In: Joint European conference on machine learning and knowledge discovery in databases. Springer, Heidelberg, pp 628–643

    Chapter  Google Scholar 

  14. Frey BJ, Dueck D (2007) Clustering by passing messages between data points. Science 315:972–976

    Article  CAS  Google Scholar 

  15. Huang J, MacKerell AD Jr (2013) CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J Comput Chem 34:2135–3145

    Article  CAS  Google Scholar 

  16. Liang J, Edelsbrunner H, Fu P, Sudhakar PV, Subramaniam S (1998) Analytical shape computation of macromolecules: I. Molecular area and volume through alpha shape. Proteins 33:1–17

    Article  CAS  Google Scholar 

  17. Liang J, Edelsbrunner H, Fu P, Sudhakar PV, Subramaniam S (1998) Analytical shape computation of macromolecules: II. Inaccessible cavities in proteins. Proteins 33:18–29

    Article  CAS  Google Scholar 

  18. Bondi A (1964) van der Waals volumes and radii. J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the US National Institutes of Health grants R01-GM126558, R01-GM079804, and R35GM127084.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Perez-Rathke, A., Fahie, M.A.V., Chisholm, C.M., Chen, M., Liang, J. (2021). Simulation of pH-Dependent, Loop-Based Membrane Protein Gating Using Pretzel. In: Fahie, M.A. (eds) Nanopore Technology. Methods in Molecular Biology, vol 2186. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0806-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0806-7_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0805-0

  • Online ISBN: 978-1-0716-0806-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics