Skip to main content

Oligonucleotide-Directed Protein Threading Through a Rigid Nanopore

Part of the Methods in Molecular Biology book series (MIMB,volume 2186)

Abstract

Nanopore technology enables the detection and analysis of single protein molecules. The technique measures the ionic current passing through a single pore inserted in an electrically insulating membrane. The translocation of the protein molecule through the pore causes a modulation of the ionic current. Analysis of the ionic current reveals the biophysics of co-translocational unfolding and may be used to infer the amino acid sequence and posttranslational modifications of the molecule.

Key words

  • Nanopore
  • Single-molecule
  • Protein
  • Sequencing
  • Co-translocational unfolding

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-0806-7_10
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-0806-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Maglia G, Heron AJ, Stoddart D, Japrung D, Bayley H (2010) Analysis of single nucleic acid molecules with protein nanopores. Methods Enzymol 475:591–623

    CAS  CrossRef  Google Scholar 

  2. Check Hayden E (2015) Pint-sized DNA sequencer impresses first users. Nature 521:15–16

    CAS  CrossRef  Google Scholar 

  3. Bayley H (2006) Sequencing single molecules of DNA. Curr Opin Chem Biol 10:628–637

    CAS  CrossRef  Google Scholar 

  4. Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, Butler T, Di Ventra M, Garaj S, Hibbs A, Huang X, Jovanovich SB, Krstic PS, Lindsay S, Ling XS, Mastrangelo CH, Meller A, Oliver JS, Pershin YV, Ramsey JM, Riehn R, Soni GV, Tabard-Cossa V, Wanunu M, Wiggin M, Schloss JA (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26:1146–1153

    CAS  CrossRef  Google Scholar 

  5. Bell NA, Keyser UF (2016) Digitally encoded DNA nanostructures for multiplexed, single-molecule protein sensing with nanopores. Nat Nanotechnol 11:645–651

    CAS  CrossRef  Google Scholar 

  6. Celaya G, Perales-Calvo J, Muga A, Moro F, Rodriguez-Larrea D (2017) Label-free, multiplexed, single-molecule analysis of protein-DNA complexes with nanopores. ACS Nano 11:5815–5825

    CAS  CrossRef  Google Scholar 

  7. Huttlin EL, Jedrychowski MP, Elias JE, Goswami T, Rad R, Beausoleil SA, Villén J, Haas W, Sowa ME, Gygi SP (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143:1174–1189

    CAS  CrossRef  Google Scholar 

  8. Rosen CB, Rodriguez-Larrea D, Bayley H (2014) Single-molecule site-specific detection of protein phosphorylation with a nanopore. Nat Biotechnol 32:179–181

    CAS  CrossRef  Google Scholar 

  9. Dong Z, Kennedy E, Hokmabadi M, Timp G (2017) Discriminating residue substitutions in a single protein molecule using a sub-nanopore. ACS Nano 11:5440–5452

    CAS  CrossRef  Google Scholar 

  10. Yusko EC, Johnson JM, Majd S, Prangkio P, Rollings RC, Li J, Yang J, Mayer M (2011) Controlling protein translocation through nanopores with bio-inspired fluid walls. Nat Nanotechnol 6:253–260

    CAS  CrossRef  Google Scholar 

  11. Nivala J, Marks DB, Akeson M (2013) Unfoldase-mediated protein translocation through an α-hemolysin nanopore. Nat Biotechnol 31:247–250

    CAS  CrossRef  Google Scholar 

  12. Rodriguez-Larrea D, Bayley H (2013) Multistep protein unfoding during nanopore translocation. Nat Nanotechnol 8:288–295

    CAS  CrossRef  Google Scholar 

  13. Rodriguez-Larrea D, Bayley H (2014) Protein co-translocational unfolding depends on the direction of pulling. Nat Commun 5:4841

    CAS  CrossRef  Google Scholar 

Download references

Acknowledgements

D.R.-L. is a recipient of a Ramón y Cajal Fellowship (RYC-2013-12799). D.R.-L. was funded by MINECO grants BIO2017-88946-R and BFU2016-81754-ERC (FEDER funds).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Rodriguez-Larrea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Celaya, G., Rodriguez-Larrea, D. (2021). Oligonucleotide-Directed Protein Threading Through a Rigid Nanopore. In: Fahie, M.A. (eds) Nanopore Technology. Methods in Molecular Biology, vol 2186. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0806-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0806-7_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0805-0

  • Online ISBN: 978-1-0716-0806-7

  • eBook Packages: Springer Protocols