Skip to main content

RNA Editing in Neurological and Neurodegenerative Disorders

  • Protocol
  • First Online:
RNA Editing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2181))

Abstract

The brain is one of the organs that are preferentially targeted by adenosine-to-inosine (A-to-I) RNA editing, a posttranscriptional modification. This chemical modification affects neuronal development and functions at multiple levels, leading to normal brain homeostasis by increasing the complexity of the transcriptome. This includes modulation of the properties of ion channel and neurotransmitter receptors by recoding, redirection of miRNA targets by changing sequence complementarity, and suppression of immune response by altering RNA structure. Therefore, from another perspective, it appears that the brain is highly vulnerable to dysregulation of A-to-I RNA editing. Here, we focus on how aberrant A-to-I RNA editing is involved in neurological and neurodegenerative diseases of humans including epilepsy, amyotrophic lateral sclerosis, psychiatric disorders, developmental disorders, brain tumors, and encephalopathy caused by autoimmunity. In addition, we provide information regarding animal models to better understand the mechanisms behind disease phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Walkley CR, Li JB (2017) Rewriting the transcriptome: adenosine-to-inosine RNA editing by ADARs. Genome Biol 18:205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Nishikura K (2015) A-to-I editing of coding and non-coding RNAs by ADARs. Nat Rev Mol Cell Biol 17:83–96

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Hundley HA, Bass BL (2010) ADAR editing in double-stranded UTRs and other noncoding RNA sequences. Trends Biochem Sci 35:377–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tan MH, Li Q, Shanmugam R, Piskol R, Kohler J, Young AN et al (2017) Dynamic landscape and regulation of RNA editing in mammals. Nature 550:249–254

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chen CX, Cho DS, Wang Q, Lai F, Carter KC, Nishikura K (2000) A third member of the RNA-specific adenosine deaminase gene family, ADAR3, contains both single- and double-stranded RNA binding domains. RNA 6:755–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mladenova D, Barry G, Konen LM, Pineda SS, Guennewig B, Avesson L et al (2018) Adar3 is involved in learning and memory in mice. Front Neurosci 12:243

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nakahama T, Kato Y, Kim JI, Vongpipatana T, Suzuki Y, Walkley CR et al (2018) ADAR1-mediated RNA editing is required for thymic self-tolerance and inhibition of autoimmunity. EMBO Rep 19:e46303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Athanasiadis A, Rich A, Maas S (2004) Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biol 2:e391

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bazak L, Haviv A, Barak M, Jacob-Hirsch J, Deng P, Zhang R et al (2014) A-to-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes. Genome Res 24:365–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Picardi E, Manzari C, Mastropasqua F, Aiello I, D’Erchia AM, Pesole G (2015) Profiling RNA editing in human tissues: towards the inosinome Atlas. Sci Rep 5:14941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chung H, Calis JJA, Wu X, Sun T, Yu Y, Sarbanes SL et al (2018) Human ADAR1 prevents endogenous RNA from triggering translational shutdown. Cell 172:811–824.e814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liddicoat BJ, Piskol R, Chalk AM, Ramaswami G, Higuchi M, Hartner JC et al (2015) RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science 349:1115–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mannion NM, Greenwood SM, Young R, Cox S, Brindle J, Read D et al (2014) The RNA-editing enzyme ADAR1 controls innate immune responses to RNA. Cell Rep 9:1482–1494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pestal K, Funk CC, Snyder JM, Price ND, Treuting PM, Stetson DB (2015) Isoforms of RNA-editing enzyme ADAR1 independently control nucleic acid sensor MDA5-driven autoimmunity and multi-organ development. Immunity 43:933–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li JB, Levanon EY, Yoon J-K, Aach J, Xie B, LeProust E et al (2009) Genome-wide identification of human RNA editing sites by parallel DNA capturing and sequencing. Science 324:1210–1213

    Article  CAS  PubMed  Google Scholar 

  16. Pinto Y, Cohen HY, Levanon EY (2014) Mammalian conserved ADAR targets comprise only a small fragment of the human editosome. Genome Biol 15:R5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Jinnah H, Ulbricht RJ (2019) Using mouse models to unlock the secrets of non-synonymous RNA editing. Methods 156:40–45

    Article  CAS  PubMed  Google Scholar 

  18. Kawahara Y, Megraw M, Kreider E, Iizasa H, Valente L, Hatzigeorgiou AG et al (2008) Frequency and fate of microRNA editing in human brain. Nucleic Acids Res 36:5270–5280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pullirsch D, Jantsch MF (2010) Proteome diversification by adenosine to inosine RNA-editing. RNA Biol 7:205–212

    Article  CAS  PubMed  Google Scholar 

  20. Sommer B, Köhler M, Sprengel R, Seeburg PH (1991) RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67:11–19

    Article  CAS  PubMed  Google Scholar 

  21. Brusa R, Zimmermann F, Koh D-S, Feldmeyer D, Gass P, Seeburg PH et al (1995) Early-onset epilepsy and postnatal lethality associated with an editing-deficient GluR-B allele in mice. Science 270:1677–1680

    Article  CAS  PubMed  Google Scholar 

  22. Higuchi M, Maas S, Single FN, Hartner J, Rozov A, Burnashev N et al (2000) Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature 406:78–81

    Article  CAS  PubMed  Google Scholar 

  23. Burns CM, Chu H, Rueter SM, Hutchinson LK, Canton H, Sanders-Bush E et al (1997) Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature 387:303–308

    Article  CAS  PubMed  Google Scholar 

  24. Kawahara Y, Grimberg A, Teegarden S, Mombereau C, Liu S, Bale TL et al (2008) Dysregulated editing of serotonin 2C receptor mRNAs results in energy dissipation and loss of fat mass. J Neurosci 28:12834–12844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Morabito MV, Abbas AI, Hood JL, Kesterson RA, Jacobs MM, Kump DS et al (2010) Mice with altered serotonin 2C receptor RNA editing display characteristics of Prader–Willi syndrome. Neurobiol Dis 39:169–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mombereau C, Kawahara Y, Gundersen BB, Nishikura K, Blendy JA (2010) Functional relevance of serotonin 2C receptor mRNA editing in antidepressant- and anxiety-like behaviors. Neuropharmacology 59:468–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bombail V, Qing W, Chapman KE, Holmes MC (2014) Prevention of 5-hydroxytryptamine2C receptor RNA editing and alternate splicing in C57BL/6 mice activates the hypothalamic-pituitary-adrenal axis and alters mood. Eur J Neurosci 40:3663–3673

    Article  PubMed  PubMed Central  Google Scholar 

  28. Miyake K, Ohta T, Nakayama H, Doe N, Terao Y, Oiki E et al (2016) CAPS1 RNA editing promotes dense Core vesicle exocytosis. Cell Rep 17:2004–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang W, Chendrimada TP, Wang Q, Higuchi M, Seeburg PH, Shiekhattar R et al (2006) Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol 13:13–21

    Article  CAS  PubMed  Google Scholar 

  30. Kawahara Y, Zinshteyn B, Sethupathy P, Iizasa H, Hatzigeorgiou AG, Nishikura K (2007) Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 315:1137–1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kawahara Y, Zinshteyn B, Chendrimada TP, Shiekhattar R, Nishikura K (2007) RNA editing of the microRNA-151 precursor blocks cleavage by the dicer–TRBP complex. EMBO Rep 8:763–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Behm M, Öhman M (2016) RNA editing: a contributor to neuronal dynamics in the mammalian brain. Trends Genet 32:165–175

    Article  CAS  PubMed  Google Scholar 

  33. Hwang T, Park C-K, Leung AKL, Gao Y, Hyde TM, Kleinman JE et al (2016) Dynamic regulation of RNA editing in human brain development and disease. Nat Neurosci 19:1093–1099

    Article  CAS  PubMed  Google Scholar 

  34. Prinz AA (2008) Understanding epilepsy through network modeling. Proc Natl Acad Sci U S A 105:5953–5954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Galen Wo Z, Oswald RE (1995) Unraveling the modular design of glutamate-gated ion channels. Trends Neurosci 18:161–168

    Article  Google Scholar 

  36. Lomeli H, Mosbacher J, Melcher T, Hoger T, Geiger JR, Kuner T et al (1994) Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science 266:1709–1713

    Article  CAS  PubMed  Google Scholar 

  37. Kamphuis W, Lopes da Silva FH (1995) Editing status at the Q/R site of glutamate receptor-A, -B, -5 and -6 subunit mRNA in the hippocampal kindling model of epilepsy. Brain Res Mol Brain Res 29:35–42

    Article  CAS  PubMed  Google Scholar 

  38. Bernard A, Ferhat L, Dessi F, Charton G, Represa A, Ben-Ari Y et al (1999) Q/R editing of the rat GluR5 and GluR6 kainate receptors in vivo and in vitro: evidence for independent developmental, pathological and cellular regulation. Eur J Neurosci 11:604–616

    Article  CAS  PubMed  Google Scholar 

  39. Kortenbruck G, Berger E, Speckmann EJ, Musshoff U (2001) RNA editing at the Q/R site for the glutamate receptor subunits GLUR2, GLUR5, and GLUR6 in hippocampus and temporal cortex from epileptic patients. Neurobiol Dis 8:459–468

    Article  CAS  PubMed  Google Scholar 

  40. Grigorenko EV, Bell WL, Glazier S, Pons T, Deadwyler S (1998) Editing status at the Q/R site of the GluR2 and GluR6 glutamate receptor subunits in the surgically excised hippocampus of patients with refractory epilepsy. Neuroreport 9:2219–2224

    Article  CAS  PubMed  Google Scholar 

  41. Vollmar W, Gloger J, Berger E, Kortenbruck G, Köhling R, Speckmann EJ et al (2004) RNA editing (R/G site) and flip–flop splicing of the AMPA receptor subunit GluR2 in nervous tissue of epilepsy patients. Neurobiol Dis 15:371–379

    Article  CAS  PubMed  Google Scholar 

  42. Bhalla T, Rosenthal JJC, Holmgren M, Reenan R (2004) Control of human potassium channel inactivation by editing of a small mRNA hairpin. Nat Struct Mol Biol 11:950–956

    Article  CAS  PubMed  Google Scholar 

  43. Streit AK, Derst C, Wegner S, Heinemann U, Zahn RK, Decher N (2011) RNA editing of Kv1.1 channels may account for reduced ictogenic potential of 4-aminopyridine in chronic epileptic rats. Epilepsia 52:645–648

    Article  CAS  PubMed  Google Scholar 

  44. Krestel H, Raffel S, von Lehe M, Jagella C, Moskau-Hartmann S, Becker A et al (2013) Differences between RNA and DNA due to RNA editing in temporal lobe epilepsy. Neurobiol Dis 56:66–73

    Article  CAS  PubMed  Google Scholar 

  45. D’Adamo MC, Hasan S, Guglielmi L, Servettini I, Cenciarini M, Catacuzzeno L et al (2015) New insights into the pathogenesis and therapeutics of episodic ataxia type 1. Front Cell Neurosci 9:317

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Ferrick-Kiddie EA, Rosenthal JJC, Ayers GD, Emeson RB (2017) Mutations underlying episodic ataxia type-1 antagonize Kv1.1 RNA editing. Sci Rep 7:41095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Srivastava PK, Bagnati M, Delahaye-Duriez A, Ko J-H, Rotival M, Langley SR et al (2017) Genome-wide analysis of differential RNA editing in epilepsy. Genome Res 27:440–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rothstein JD (2009) Current hypotheses for the underlying biology of amyotrophic lateral sclerosis. Ann Neurol 65:S3–S9

    Article  CAS  PubMed  Google Scholar 

  49. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133

    Article  CAS  PubMed  Google Scholar 

  50. Ling S-C, Polymenidou M, Cleveland DW (2013) Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79:416–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kwak S, Hideyama T, Yamashita T, Aizawa H (2010) AMPA receptor-mediated neuronal death in sporadic ALS. Neuropathology 30:182–188

    Article  PubMed  Google Scholar 

  52. Kawahara Y, Kwak S (2005) Excitotoxicity and ALS: what is unique about the AMPA receptors expressed on spinal motor neurons? Amyotroph Lateral Scler Other Motor Neuron Disord 6:131–144

    Article  CAS  PubMed  Google Scholar 

  53. Kuner R, Groom AJ, Bresink I, Kornau H-C, Stefovska V, Müller G et al (2005) Late-onset motoneuron disease caused by a functionally modified AMPA receptor subunit. Proc Natl Acad Sci U S A 102:5826–5831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Feldmeyer D, Kask K, Brusa R, Kornau HC, Kolhekar R, Rozov A et al (1999) Neurological dysfunctions in mice expressing different levels of the Q/R site–unedited AMPAR subunit GluR–B. Nat Neurosci 2:57–64

    Article  CAS  PubMed  Google Scholar 

  55. Kawahara Y, Kwak S, Sun H, Ito K, Hashida H, Aizawa H et al (2003) Human spinal motoneurons express low relative abundance of GluR2 mRNA: an implication for excitotoxicity in ALS. J Neurochem 85:680–689

    Article  CAS  PubMed  Google Scholar 

  56. Takuma H, Kwak S, Yoshizawa T, Kanazawa I (1999) Reduction of GluR2 RNA editing, a molecular change that increases calcium influx through AMPA receptors, selective in the spinal ventral gray of patients with amyotrophic lateral sclerosis. Ann Neurol 46:806–815

    Article  CAS  PubMed  Google Scholar 

  57. Kawahara Y, Ito K, Sun H, Aizawa H, Kanazawa I, Kwak S (2004) RNA editing and death of motor neurons. Nature 427:801–801

    Article  CAS  PubMed  Google Scholar 

  58. Hideyama T, Yamashita T, Suzuki T, Tsuji S, Higuchi M, Seeburg PH et al (2010) Induced loss of ADAR2 engenders slow death of motor neurons from Q/R site-unedited GluR2. J Neurosci 30:11917–11925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hideyama T, Yamashita T, Aizawa H, Tsuji S, Kakita A, Takahashi H et al (2012) Profound downregulation of the RNA editing enzyme ADAR2 in ALS spinal motor neurons. Neurobiol Dis 45:1121–1128

    Article  CAS  PubMed  Google Scholar 

  60. Yamashita T, Hideyama T, Hachiga K, Teramoto S, Takano J, Iwata N et al (2012) A role for calpain-dependent cleavage of TDP-43 in amyotrophic lateral sclerosis pathology. Nat Commun 3:1307

    Article  PubMed  CAS  Google Scholar 

  61. Aizawa H, Sawada J, Hideyama T, Yamashita T, Katayama T, Hasebe N et al (2010) TDP-43 pathology in sporadic ALS occurs in motor neurons lacking the RNA editing enzyme ADAR2. Acta Neuropathol 120:75–84

    Article  CAS  PubMed  Google Scholar 

  62. Aizawa H, Hideyama T, Yamashita T, Kimura T, Suzuki N, Aoki M et al (2016) Deficient RNA-editing enzyme ADAR2 in an amyotrophic lateral sclerosis patient with a FUS P525L mutation. J Clin Neurosci 32:128–129

    Article  CAS  PubMed  Google Scholar 

  63. Moore S, Alsop E, Lorenzini I, Starr A, Rabichow BE, Mendez E et al (2019) ADAR2 mislocalization and widespread RNA editing aberrations in C9orf72-mediated ALS/FTD. Acta Neuropathol 138(1):49–65.

    Google Scholar 

  64. Yamashita T, Chai HL, Teramoto S, Tsuji S, Shimazaki K, Muramatsu S et al (2013) Rescue of amyotrophic lateral sclerosis phenotype in a mouse model by intravenous AAV9-ADAR2 delivery to motor neurons. EMBO Mol Med 5:1710–1719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Akamatsu M, Yamashita T, Hirose N, Teramoto S, Kwak S (2016) The AMPA receptor antagonist perampanel robustly rescues amyotrophic lateral sclerosis (ALS) pathology in sporadic ALS model mice. Sci Rep 6:28649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Oboudiyat C, Glazer H, Seifan A, Greer C, Isaacson RS (2013) Alzheimer’s disease. Semin Neurol 33:313–329

    Article  PubMed  Google Scholar 

  67. Carlson NG, Howard J, Gahring LC, Rogers SW (2000) RNA editing (Q/R site) and flop/flip splicing of AMPA receptor transcripts in young and old brains. Neurobiol Aging 21:599–606

    Article  CAS  PubMed  Google Scholar 

  68. Akbarian S, Smith MA, Jones EG (1995) Editing for an AMPA receptor subunit RNA in prefrontal cortex and striatum in Alzheimer’s disease, Huntington’s disease and schizophrenia. Brain Res 699:297–304

    Article  CAS  PubMed  Google Scholar 

  69. Gaisler-Salomon I, Kravitz E, Feiler Y, Safran M, Biegon A, Amariglio N et al (2014) Hippocampus-specific deficiency in RNA editing of GluA2 in Alzheimer’s disease. Neurobiol Aging 35:1785–1791

    Article  CAS  PubMed  Google Scholar 

  70. Khermesh K, D’Erchia AM, Barak M, Annese A, Wachtel C, Levanon EY et al (2016) Reduced levels of protein recoding by A-to-I RNA editing in Alzheimer’s disease. RNA 22:290–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Schmidt-Kastner R, Freund TF (1991) Selective vulnerability of the hippocampus in brain ischemia. Neuroscience 40:599–636

    Article  CAS  PubMed  Google Scholar 

  72. Pellegrini-Giampietro DE, Gorter JA, Bennett MVL, Zukin RS (1997) The GluR2 (GluR-B) hypothesis: Ca(2+)-permeable AMPA receptors in neurological disorders. Trends Neurosci 20:464–470

    Article  CAS  PubMed  Google Scholar 

  73. Kamphuis W, de Leeuw FE, Lopes da Silva FH (1995) Ischaemia does not alter the editing status at the Q/R site of glutamate receptor-A, -B, -5 and -6 subunit mRNA. Neuroreport 6:1133–1136

    Article  CAS  PubMed  Google Scholar 

  74. Paschen W, Schmitt J, Uto A (1996) RNA editing of glutamate receptor subunits GluR2, GluR5, and GluR6 in transient cerebral ischemia in the rat. J Cereb Blood Flow Metab 16:548–556

    Article  CAS  PubMed  Google Scholar 

  75. Rump A, Sommer C, Gass P, Bele S, Meissner D, Kiessling M (1996) Editing of GluR2 RNA in the Gerbil Hippocampus after global cerebral ischemia. J Cereb Blood Flow Metab 16:1362–1365

    Article  CAS  PubMed  Google Scholar 

  76. Gorter JA, Petrozzino JJ, Aronica EM, Rosenbaum DM, Opitz T, Bennett MVL et al (1997) Global ischemia induces downregulation of Glur2 mRNA and increases AMPA receptor-mediated Ca2+ influx in hippocampal CA1 neurons of gerbil. J Neurosci 17:6179–6188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yamaguchi K, Yamaguchi F, Miyamoto O, Hatase O, Tokuda M (1999) The reversible change of GluR2 RNA editing in gerbil hippocampus in course of ischemic tolerance. J Cereb Blood Flow Metab 19:370–375

    Article  CAS  PubMed  Google Scholar 

  78. Peng PL, Zhong X, Tu W, Soundarapandian MM, Molner P, Zhu D et al (2006) ADAR2-dependent RNA editing of AMPA receptor subunit GluR2 determines vulnerability of neurons in forebrain ischemia. Neuron 49:719–733

    Article  CAS  PubMed  Google Scholar 

  79. Anzai T, Tsuzuki K, Yamada N, Hayashi T, Iwakuma M, Inada K et al (2003) Overexpression of Ca2+-permeable AMPA receptor promotes delayed cell death of hippocampal CA1 neurons following transient forebrain ischemia. Neurosci Res 46:41–51

    Article  CAS  PubMed  Google Scholar 

  80. Liu S, Lau L, Wei J, Zhu D, Zou S, Sun H-S et al (2004) Expression of Ca(2+)-permeable AMPA receptor channels primes cell death in transient forebrain ischemia. Neuron 43:43–55

    Article  PubMed  Google Scholar 

  81. Chen R, Smith-Cohn M, Cohen AL, Colman H (2017) Glioma subclassifications and their clinical significance. Neurotherapeutics 14:284–297

    Article  PubMed  PubMed Central  Google Scholar 

  82. Cenci C, Barzotti R, Galeano F, Corbelli S, Rota R, Massimi L et al (2008) Down-regulation of RNA editing in pediatric astrocytomas: ADAR2 editing activity inhibits cell migration and proliferation. J Biol Chem 283:7251–7260

    Article  CAS  PubMed  Google Scholar 

  83. Maas S, Patt S, Schrey M, Rich A (2001) Underediting of glutamate receptor GluR-B mRNA in malignant gliomas. Proc Natl Acad Sci U S A 98:14687–14692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Galeano F, Leroy A, Rossetti C, Gromova I, Gautier P, Keegan LP et al (2010) Human BLCAP transcript: new editing events in normal and cancerous tissues. Int J Cancer 127:127–137

    Article  CAS  PubMed  Google Scholar 

  85. Paz N, Levanon EY, Amariglio N, Heimberger AB, Ram Z, Constantini S et al (2007) Altered adenosine-to-inosine RNA editing in human cancer. Genome Res 17:1586–1595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Oakes E, Anderson A, Cohen-Gadol A, Hundley HA (2017) Adenosine deaminase that acts on RNA 3 (ADAR3) binding to glutamate receptor subunit B pre-mRNA inhibits RNA editing in glioblastoma. J Biol Chem 292:4326–4335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wei J, Li Z, Du C, Qi B, Zhao X, Wang L et al (2014) Abnormal expression of an ADAR2 alternative splicing variant in gliomas downregulates adenosine-to-inosine RNA editing. Acta Neurochir 156:1135–1142

    Article  PubMed  Google Scholar 

  88. Ishiuchi S, Tsuzuki K, Yoshida Y, Yamada N, Hagimura N, Okado H et al (2002) Blockage of Ca2+-permeable AMPA receptors suppresses migration and induces apoptosis in human glioblastoma cells. Nat Med 8:971–978

    Article  CAS  PubMed  Google Scholar 

  89. Ishiuchi S, Yoshida Y, Sugawara K, Aihara M, Ohtani T, Watanabe T et al (2007) Ca2+-permeable AMPA receptors regulate growth of human glioblastoma via Akt activation. J Neurosci 27:7987–8001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Galeano F, Rossetti C, Tomaselli S, Cifaldi L, Lezzerini M, Pezzullo M et al (2013) ADAR2-editing activity inhibits glioblastoma growth through the modulation of the CDC14B/Skp2/p21/p27 axis. Oncogene 32:998–1009

    Article  CAS  PubMed  Google Scholar 

  91. Tomaselli S, Galeano F, Alon S, Raho S, Galardi S, Polito VA et al (2015) Modulation of microRNA editing, expression and processing by ADAR2 deaminase in glioblastoma. Genome Biol 16:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Paul D, Sinha AN, Ray A, Lal M, Nayak S, Sharma A et al (2017) A-to-I editing in human miRNAs is enriched in seed sequence, influenced by sequence contexts and significantly hypoedited in glioblastoma multiforme. Sci Rep 7:2466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Choudhury Y, Tay FC, Lam DH, Sandanaraj E, Tang C, Ang B-T et al (2012) Attenuated adenosine-to-inosine editing of microRNA-376a promotes invasiveness of glioblastoma cells. J Clin Invest 122:4059–4076

    Google Scholar 

  94. Cesarini V, Silvestris DA, Tassinari V, Tomaselli S, Alon S, Eisenberg E et al (2017) ADAR2/miR-589-3p axis controls glioblastoma cell migration/invasion. Nucleic Acids Res 46:2045–2059

    Article  PubMed Central  CAS  Google Scholar 

  95. Shimokawa T, Rahman MF-U, Tostar U, Sonkoly E, Ståhle M, Pivarcsi A et al (2013) RNA editing of the GLI1 transcription factor modulates the output of Hedgehog signaling. RNA Biol 10:321–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Paz-Yaacov N, Bazak L, Buchumenski I, Porath HT, Danan-Gotthold M, Knisbacher BA et al (2015) Elevated RNA editing activity is a major contributor to transcriptomic diversity in tumors. Cell Rep 13:267–276

    Article  CAS  PubMed  Google Scholar 

  97. Wang Y, Xu X, Yu S, Jeong KJ, Zhou Z, Han L et al (2017) Systematic characterization of A-to-I RNA editing hotspots in microRNAs across human cancers. Genome Res 27:1112–1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Niswender CM, Herrick-Davis K, Dilley GE, Meltzer HY, Overholser JC, Stockmeier CA et al (2001) RNA editing of the human serotonin 5-HT2C receptor: alterations in suicide and implications for serotonergic pharmacotherapy. Neuropsychopharmacology 24:478–491

    Article  CAS  PubMed  Google Scholar 

  99. Marion S, Weiner DM, Caron MG (2004) RNA editing induces variation in desensitization and trafficking of 5-hydroxytryptamine 2C receptor isoforms. J Biol Chem 279:2945–2954

    Article  CAS  PubMed  Google Scholar 

  100. Niswender CM, Copeland SC, Herrick-Davis K, Emeson RB, Sanders-Bush E (1999) RNA editing of the human serotonin 5-hydroxytryptamine 2C receptor silences constitutive activity. J Biol Chem 274:9472–9478

    Article  CAS  PubMed  Google Scholar 

  101. Gurevich I, Tamir H, Arango V, Dwork AJ, Mann JJ, Schmauss C (2002) Altered editing of serotonin 2C receptor pre-mRNA in the prefrontal cortex of depressed suicide victims. Neuron 34:349–356

    Article  CAS  PubMed  Google Scholar 

  102. Dracheva S, Elhakem SL, Marcus SM, Siever LJ, McGurk SR, Haroutunian V (2003) RNA editing and alternative splicing of human serotonin 2C receptor in schizophrenia. J Neurochem 87:1402–1412

    Article  CAS  PubMed  Google Scholar 

  103. Iwamoto K, Kato T (2003) RNA editing of serotonin 2C receptor in human postmortem brains of major mental disorders. Neurosci Lett 346:169–172

    Article  CAS  PubMed  Google Scholar 

  104. Sodhi MS, Burnet PWJ, Makoff AJ, Kerwin RW, Harrison PJ (2001) RNA editing of the 5-HT2C receptor is reduced in schizophrenia. Mol Psychiatry 6:373–379

    Article  CAS  PubMed  Google Scholar 

  105. Dracheva S, Patel N, Woo DA, Marcus SM, Siever LJ, Haroutunian V (2007) Increased serotonin 2C receptor mRNA editing: a possible risk factor for suicide. Mol Psychiatry 13:1001–1010

    Article  PubMed  CAS  Google Scholar 

  106. Lyddon R, Dwork AJ, Keddache M, Siever LJ, Dracheva S (2013) Serotonin 2c receptor RNA editing in major depression and suicide. World J Biol Psychiatry 14:590–601

    Article  PubMed  Google Scholar 

  107. Di Narzo AF, Kozlenkov A, Roussos P, Hao K, Hurd Y, Lewis DA et al (2014) A unique gene expression signature associated with serotonin 2C receptor RNA editing in the prefrontal cortex and altered in suicide. Hum Mol Genet 23:4801–4813

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Weissmann D, van der Laan S, Underwood MD, Salvetat N, Cavarec L, Vincent L et al (2016) Region-specific alterations of A-to-I RNA editing of serotonin 2c receptor in the cortex of suicides with major depression. Transl Psychiatry 6:e878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Iwamoto K, Nakatani N, Bundo M, Yoshikawa T, Kato T (2005) Altered RNA editing of serotonin 2C receptor in a rat model of depression. Neurosci Res 53:69–76

    Article  CAS  PubMed  Google Scholar 

  110. Dick ALW, Khermesh K, Paul E, Stamp F, Levanon EY, Chen A (2019) Adenosine-to-inosine RNA editing within corticolimbic brain regions is regulated in response to chronic social defeat stress in mice. Front Psych 10:277

    Article  Google Scholar 

  111. Watanabe Y, Yoshimoto K, Tatebe H, Kita M, Nishikura K, Kimura M et al (2014) Enhancement of alcohol drinking in mice depends on alterations in RNA editing of serotonin 2C receptors. Int J Neuropsychopharmacol 17:739–751

    Article  CAS  PubMed  Google Scholar 

  112. Martin CBP, Ramond F, Farrington DT, Aguiar AS Jr, Chevarin C, Berthiau AS et al (2012) RNA splicing and editing modulation of 5-HT2C receptor function: relevance to anxiety and aggression in VGV mice. Mol Psychiatry 18:656–665

    Article  PubMed  CAS  Google Scholar 

  113. Aoki M, Watanabe Y, Yoshimoto K, Tsujimura A, Yamamoto T, Kanamura N et al (2016) Involvement of serotonin 2C receptor RNA editing in accumbal neuropeptide Y expression and behavioural despair. Eur J Neurosci 43:1219–1228

    Article  PubMed  Google Scholar 

  114. Cassidy SB, Schwartz S, Miller JL, Driscoll DJ (2011) Prader-Willi syndrome. Genet Med 14:10–26

    Article  PubMed  CAS  Google Scholar 

  115. Vitali P, Basyuk E, Le Meur E, Bertrand E, Muscatelli F, Cavaillé J et al (2005) ADAR2-mediated editing of RNA substrates in the nucleolus is inhibited by C/D small nucleolar RNAs. J Cell Biol 169:745–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kishore S, Khanna A, Zhang Z, Hui J, Balwierz PJ, Stefan M et al (2010) The snoRNA MBII-52 (SNORD 115) is processed into smaller RNAs and regulates alternative splicing. Hum Mol Genet 19:1153–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Cavaillé J, Buiting K, Kiefmann M, Lalande M, Brannan CI, Horsthemke B et al (2000) Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization. Proc Natl Acad Sci U S A 97:14311–14316

    Article  PubMed  PubMed Central  Google Scholar 

  118. Kishore S, Stamm S (2006) The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C. Science 311:230–232

    Article  CAS  PubMed  Google Scholar 

  119. Doe CM, Relkovic D, Garfield AS, Dalley JW, Theobald DEH, Humby T et al (2009) Loss of the imprinted snoRNA mbii-52 leads to increased 5htr2c pre-RNA editing and altered 5HT2CR-mediated behaviour. Hum Mol Genet 18:2140–2148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Glatt-Deeley H, Bancescu DL, Lalande M (2010) Prader–Willi syndrome, Snord115, and Htr2c editing. Neurogenetics 11:143–144

    Article  PubMed  Google Scholar 

  121. Cornish K, Turk J, Levitas A (2007) Fragile X syndrome and autism: common developmental pathways? Curr Pediatr Rev 3:61–68

    Article  CAS  Google Scholar 

  122. Tran SS, Jun H-I, Bahn JH, Azghadi A, Ramaswami G, Van Nostrand EL et al (2019) Widespread RNA editing dysregulation in brains from autistic individuals. Nat Neurosci 22:25–36

    Article  CAS  PubMed  Google Scholar 

  123. O'Donnell WT, Warren ST (2002) A decade of molecular studies of fragile X syndrome. Annu Rev Neurosci 25:315–338

    Article  CAS  PubMed  Google Scholar 

  124. Corbin F, Bouillon M, Fortin A, Morin S, Rousseau F, Khandjian EW (1997) The fragile X mental retardation protein is associated with poly(A)+ mRNA in actively translating polyribosomes. Hum Mol Genet 6:1465–1472

    Article  CAS  PubMed  Google Scholar 

  125. Laggerbauer B, Ostareck D, Keidel EM, Ostareck-Lederer A, Fischer U (2001) Evidence that fragile X mental retardation protein is a negative regulator of translation. Hum Mol Genet 10:329–338

    Article  CAS  PubMed  Google Scholar 

  126. Bhogal B, Jepson JE, Savva YA, Pepper ASR, Reenan RA, Jongens TA (2011) Modulation of dADAR-dependent RNA editing by the Drosophila fragile X mental retardation protein. Nat Neurosci 14:1517–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Shamay-Ramot A, Khermesh K, Porath HT, Barak M, Pinto Y, Wachtel C et al (2015) Fmrp interacts with Adar and regulates RNA editing, synaptic density and locomotor activity in zebrafish. PLoS Genet 11:e1005702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Filippini A, Bonini D, Lacoux C, Pacini L, Zingariello M, Sancillo L et al (2017) Absence of the fragile X mental retardation protein results in defects of RNA editing of neuronal mRNAs in mouse. RNA Biol 14:1580–1591

    Article  PubMed  PubMed Central  Google Scholar 

  129. Eran A, Li JB, Vatalaro K, McCarthy J, Rahimov F, Collins C et al (2012) Comparative RNA editing in autistic and neurotypical cerebella. Mol Psychiatry 18:1041

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Antonarakis SE (2016) Down syndrome and the complexity of genome dosage imbalance. Nat Rev Genet 18:147–163

    Article  PubMed  CAS  Google Scholar 

  131. Kawahara Y, Ito K, Sun H, Ito M, Kanazawa I, Kwak S (2004) Regulation of glutamate receptor RNA editing and ADAR mRNA expression in developing human normal and Down’s syndrome brains. Brain Res Dev Brain Res 148:151–155

    Article  CAS  PubMed  Google Scholar 

  132. Gonzales PK, Roberts CM, Fonte V, Jacobsen C, Stein GH, Link CD (2018) Transcriptome analysis of genetically matched human induced pluripotent stem cells disomic or trisomic for chromosome 21. PLoS One 13:e0194581

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Livingston JH, Crow YJ (2016) Neurologic phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR1, and IFIH1: Aicardi–Goutières syndrome and beyond. Neuropediatrics 47:355–360

    Article  CAS  PubMed  Google Scholar 

  134. Lee-Kirsch MA, Wolf C, Günther C (2014) Aicardi–Goutières syndrome: a model disease for systemic autoimmunity. Clin Exp Immunol 175:17–24

    Article  CAS  PubMed  Google Scholar 

  135. Crow YJ, Chase DS, Lowenstein Schmidt J, Szynkiewicz M, Forte GMA, Gornall HL et al (2015) Characterization of human disease phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1. Am J Med Genet A 167:296–312

    Article  CAS  Google Scholar 

  136. Rice GI, Kasher PR, Forte GMA, Mannion NM, Greenwood SM, Szynkiewicz M et al (2012) Mutations in ADAR1 cause Aicardi-Goutières syndrome associated with a type I interferon signature. Nat Genet 44:1243–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Oda H, Nakagawa K, Abe J, Awaya T, Funabiki M, Hijikata A et al (2014) Aicardi-Goutières syndrome is caused by IFIH1 mutations. Am J Hum Genet 95:121–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Goutières F, Aicardi J (1982) Acute neurological dysfunction associated with destructive lesions of the basal ganglia in children. Ann Neurol 12:328–332

    Article  PubMed  Google Scholar 

  139. La Piana R, Uggetti C, Olivieri I, Tonduti D, Balottin U, Fazzi E et al (2014) Bilateral striatal necrosis in two subjects with Aicardi–Goutières syndrome due to mutations in ADAR1 (AGS6). Am J Med Genet A 164:815–819

    Article  CAS  Google Scholar 

  140. Slotkin W, Nishikura K (2013) Adenosine-to-inosine RNA editing and human disease. Genome Med 5:105

    Article  PubMed  PubMed Central  Google Scholar 

  141. Hayashi M, Suzuki T (2013) Dyschromatosis symmetrica hereditaria. J Dermatol 40:336–343

    Article  CAS  PubMed  Google Scholar 

  142. Tojo K, Sekijima Y, Suzuki T, Suzuki N, Tomita Y, Yoshida K et al (2006) Dystonia, mental deterioration, and dyschromatosis symmetrica hereditaria in a family with ADAR1 mutation. Mov Disord 21:1510–1513

    Article  PubMed  Google Scholar 

  143. Kondo T, Suzuki T, Ito S, Kono M, Negoro T, Tomita Y (2008) Dyschromatosis symmetrica hereditaria associated with neurological disorders. J Dermatol 35:662–666

    Article  PubMed  Google Scholar 

  144. Hou Y, Chen J, Gao M, Zhou F, Du W, Shen Y et al (2007) Five novel mutations of RNA-specific adenosine deaminase gene with dyschromatosis symmetrica hereditaria. Acta Derm Venereol 87:18–21

    Article  CAS  PubMed  Google Scholar 

  145. Fisher AJ, Beal PA (2017) Effects of Aicardi-Goutières syndrome mutations predicted from ADAR-RNA structures. RNA Biol 14:164–170

    Article  PubMed  Google Scholar 

  146. Wang Q, Khillan J, Gadue P, Nishikura K (2000) Requirement of the RNA editing deaminase ADAR1 gene for embryonic erythropoiesis. Science 290:1765–1768

    Article  CAS  PubMed  Google Scholar 

  147. Hartner JC, Walkley CR, Lu J, Orkin SH (2008) ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling. Nat Immunol 10:109–115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Ward SV, George CX, Welch MJ, Liou L-Y, Hahm B, Lewicki H et al (2011) RNA editing enzyme adenosine deaminase is a restriction factor for controlling measles virus replication that also is required for embryogenesis. Proc Natl Acad Sci U S A 108:331–336

    Article  CAS  PubMed  Google Scholar 

  149. Neeman Y, Levanon EY, Jantsch MF, Eisenberg E (2006) RNA editing level in the mouse is determined by the genomic repeat repertoire. RNA 12:1802–1809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This review is dedicated to the memory of the late Professor Marie Öhman who contributed greatly to the field of RNA editing. This work was supported by Grants-in-Aid KAKENHI (17K19352) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan and by grants from SENSHIN Medical Research Foundation, The Mochida Memorial Foundation for Medical and Pharmaceutical Research, and the Takeda Science Foundation (to Y.K.). P.H.C.C. was supported by the MEXT scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukio Kawahara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Costa Cruz, P.H., Kawahara, Y. (2021). RNA Editing in Neurological and Neurodegenerative Disorders. In: Picardi, E., Pesole, G. (eds) RNA Editing. Methods in Molecular Biology, vol 2181. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0787-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0787-9_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0786-2

  • Online ISBN: 978-1-0716-0787-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics