Principles Underlying Cryopreservation and Freeze-Drying of Cells and Tissues

Part of the Methods in Molecular Biology book series (MIMB, volume 2180)


Cryopreservation and freeze-drying can be used to preserve cells or tissues for prolonged periods. Vitrification, or ice-free cryopreservation, is an alternative to cryopreservation that enables cooling cells to cryogenic temperatures in the absence of ice. The processing pathways involved in (ice-free) cryopreservation and freeze-drying of cells and tissues, however, can be very damaging. In this chapter, we describe the principles underlying preservation of cells for which freezing and drying are normally lethal processes as well as for cells that are able to survive in a reversible state of suspended animation. Freezing results in solution effects injury and/or intracellular ice formation, whereas drying results in removal of (non-freezable) water normally bound to biomolecules, which is generally more damaging. Cryopreservation and freeze-drying require different types of protective agents. Different mechanistic modes of action of cryoprotective and lyoprotective agents are described including minimizing ice formation, preferential exclusion, water replacement, and vitrification. Furthermore, it is discussed how protective agents can be introduced into cells avoiding damage due to too large cell volume excursions, and how knowledge of cell-specific membrane permeability properties in various temperature regimes can be used to rationally design (ice-free) cryopreservation and freeze-drying protocols.

Key words

Cryopreservation Vitrification Cryoprotectants Lyoprotectants Anhydrobiosis Preferential exclusion theory Water replacement theory Membrane phase behavior Membrane permeability 


  1. 1.
    Crowe JH, Carpenter JF, Crowe LM (1998) The role of vitrification in anhydrobiosis. Annu Rev Physiol 60:73–103PubMedCrossRefGoogle Scholar
  2. 2.
    Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosis. Annu Rev Physiol 54:579–599PubMedCrossRefGoogle Scholar
  3. 3.
    Alpert P (2000) The discovery, scope, and puzzle of desiccation tolerance in plants. Plant Ecol 151:5–17CrossRefGoogle Scholar
  4. 4.
    Boothby TC, Pielak GJ (2017) Intrinsically disordered proteins and desiccation tolerance: elucidating functional and mechanistic underpinnings of anhydrobiosis. BioEssays 39:1700119CrossRefGoogle Scholar
  5. 5.
    Bartels D, Schneider K, Terstappen G, Piatkowski D, Salamini F (1990) Molecular cloning of abscisic acid-modulated genes which are induced during desiccation of the resurrection plant Craterostigma plantagineum. Planta 181:27–34PubMedCrossRefGoogle Scholar
  6. 6.
    Amuti KS, Pollard CJ (1977) Soluble carbohydrates of dry and developing seeds. Phytochemistry 16:529–532CrossRefGoogle Scholar
  7. 7.
    Buitink J, Walters-Vertucci C, Hoekstra FA, Leprince O (1996) Calorimetric properties of dehydrating pollen: analysis of a desiccation tolerant and an intolerant species. Plant Physiol 111:235–242PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Crowe JH, Crowe LM, Oliver AE, Tsvetkova N, Wolkers W, Tablin F (2001) The trehalose myth revisited: introduction to a symposium on stabilization of cells in the dry state. Cryobiology 43:89–105PubMedCrossRefGoogle Scholar
  9. 9.
    Leprince O, Pellizzaro A, Berriri S, Buitink J (2017) Late seed maturation: drying without dying. J Exp Bot 68:827–841PubMedGoogle Scholar
  10. 10.
    Tanaka S, Tanaka J, Miwa Y, Horikawa DD, Katayama T, Arakawa K, Toyoda A, Kubo T, Kunieda T (2015) Novel mitochondria-targeted heat-soluble proteins identified in the anhydrobiotic Tardigrade improve osmotic tolerance of human cells. PLoS One 10:e0118272PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Hatanaka R, Gusev O, Cornette R, Shimura S, Kikuta S, Okada J, Okuda T, Kikawada T (2015) Diversity of the expression profiles of late embryogenesis abundant (LEA) protein encoding genes in the anhydrobiotic midge Polypedilum vanderplanki. Planta 242:451–459PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Wolkers WF, Alberda M, Koornneef M, Leon-Kloosterziel KM, Hoekstra FA (1998) Properties and the glassy matrix in maturation defective mutant seed of Arabidopsis thaliana. Plant J 16:133–143PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Wolkers WF, Tetteroo FAA, Alberda M, Hoekstra FA (1999) Changed properties of the cytoplasmic matrix associated with desiccation tolerance of dried carrot somatic embryos. An in situ Fourier transform infrared spectroscopic study. Plant Physiol 120:153–164PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Wolkers WF, McCready S, Brandt WF, Lindsey GG, Hoekstra FA (2001) Isolation and characterization of a D-7 LEA protein from pollen that stabilizes glasses in vitro. Biochim Biophys Acta 1544:196–206PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Hoekstra FA, Golovina EA, Tetteroo FA, Wolkers WF (2001) Induction of desiccation tolerance in plant somatic embryos: how exclusive is the protective role of sugars? Cryobiology 43:140–150PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Oldenhof H, Wolkers WF, Bowman JL, Tablin F, Crowe JH (2006) Freezing and desiccation tolerance in the moss Physcomitrella patens: an in situ Fourier transform infrared spectroscopic study. Biochim Biophys Acta 1760:1226–1234PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Mühlbacher F, Langer F, Mittermayer C (1999) Preservation solutions for transplantation. Transpl Proc 31:2069–2070CrossRefGoogle Scholar
  18. 18.
    Mazur P, Rall WF, Leibo SP (1984) Kinetics of water loss and the likelihood of intracellular freezing in mouse ova. Influence of the method of calculating the temperature dependence of water permeability. Cell Biophys 6:197–213PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Fahy GM, Wowk B (2015) Principles of cryopreservation by vitrification. In: Wolkers WF, Oldenhof H (eds) Methods in cryopreservation and freeze-drying, methods in molecular biology. Springer, New York, pp 21–82Google Scholar
  20. 20.
    Giwa S, Lewis JK, Alvarez L, Langer R, Roth AE, Church GM, Markmann JF, Sachs DH, Chandraker A, Wertheim JA, Rothblatt M, Boyden ES, Eidbo E, Lee WPA, Pomahac B, Brandacher G, Weinstock DM, Elliott G, Nelson D, Acker JP, Uygun K, Schmalz B, Weegman BP, Tocchio A, Fahy GM, Storey KB, Rubinsky B, Bischof J, Elliott JAW, Woodruff TK, Morris GJ, Demirci U, Brockbank KGM, Woods EJ, Ben RN, Baust JG, Gao D, Fuller B, Rabin Y, Kravitz DC, Taylor MJ, Toner M (2017) The promise of organ and tissue preservation to transform medicine. Nat Biotechnol 35:530–542PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Crowe JH, Carpenter JF, Crowe LM, Anchordoguy TJ (1990) Are freezing and dehydration similar stress vectors? A comparison of modes of interaction of stabilizing solutes with biomolecules. Cryobiology 27:219–231CrossRefGoogle Scholar
  22. 22.
    Pietramaggiori G, Kaipainen A, Ho D, Orser C, Pebley W, Rudolph A, Orgill DP (2007) Trehalose lyophilized platelets for wound healing. Wound Repair Regen 15:213–220PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Wakayama T, Yanagimachi R (1998) Development of normal mice from oocytes injected with freeze-dried spermatozoa. Nat Biotechnol 7:639–641CrossRefGoogle Scholar
  24. 24.
    Goecke T, Theodoridis K, Tudorache I, Ciubotaru A, Cebotari S, Ramm R, Höffler K, Sarikouch S, Vásquez Rivera A, Haverich A, Wolkers WF, Hilfiker A (2018) In vivo performance of freeze-dried decellularized pulmonary heart valve Allo- and xenografts orthotopically implanted into juvenile sheep. Acta Biomater 68:41–52PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Pegg DE (2015) Principles of cryopreservation. In: Wolkers WF, Oldenhof H (eds) Methods in cryopreservation and freeze-drying, methods in molecular biology. Springer, New York, pp 3–19Google Scholar
  26. 26.
    Mazur P (1963) Kinetics of water loss from cells at subzero temperatures and the likelihood of intracellular freezing. J Gen Physiol 47:347–369PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Leibo SP, McGrath JJ, Cravalho EG (1978) Microscopic observation of intracellular ice formation in unfertilized mouse ova as a function of cooling rate. Cryobiology 15:257–271PubMedCrossRefGoogle Scholar
  28. 28.
    Lovelock JE (1953) The mechanism of the protective action of glycerol against haemolysis by freezing and thawing. Biochim Biophys Acta 11:28–36PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Lovelock JE (1953) The haemolysis of human red blood cells by freezing and thawing. Biochim Biophys Acta 10:414–426PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Steponkus PL, Uemura M, Joseph RA, Gilmour SJ, Thomashow MF (1998) Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. Proc Natl Acad Sci U S A 95:14570–14575PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Wolkers WF, Oldenhof H, Tang F, Han J, Bigalk J, Sieme H (2019) Factors affecting the membrane permeability barrier function of cells during preservation technologies. Langmuir 35:7520–7528PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Anchordoguy TJ, Cecchini CA, Crowe JH, Crowe LM (1991) Insights into the cryoprotective mechanism of dimethyl sulfoxide for phospholipid bilayers. Cryobiology 28:467–473PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Prestrelski SJ, Tedeschi N, Arakawa T, Carpenter JF (1993) Dehydration-induced conformational transitions in proteins and their inhibition by stabilizers. Biophys J 65:661–671PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Crowe JH, Spargo BJ, Crowe LM (1987) Preservation of dry liposomes does not require retention of residual water. Proc Natl Acad Sci U S A 84:1537–1540PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Crowe JH, Oliver AE, Hoekstra FA, Crowe LM (1997) Stabilization of dry membranes by mixtures of hydroxyethyl starch and glucose: the role of vitrification. Cryobiology 35:20–30PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Leprince O, Atherton NM, Deltour R, Hendry GAF (1994) The involvement of respiration in free radical processes during loss of desiccation tolerance in germinating Zea mays L. An electron paramagnetic resonance study. Plant Physiol 104:1333–1339PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Senaratna T, McKersie BD, Borochov A (1987) Desiccation and free radical mediated changes in plant membranes. J Exp Bot 38:2005–2014CrossRefGoogle Scholar
  38. 38.
    França MB, Panek AD, Eleutherio ECA (2007) Oxidative stress and its effects during dehydration. Comp Biochem Physiol A Mol Integr Physiol 146:621–631PubMedCrossRefGoogle Scholar
  39. 39.
    Potts M (1994) Desiccation tolerance in prokaryotes. Microbiol Rev 58:755–805PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Murthy UMN, Sun WQ (2000) Protein modification by Amadori and Maillard reactions during seed storage: Roles of sugar hydrolysis and lipid peroxidation. J Exp Bot 51:1221–1228PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Sun WQ, Leopold AC (1995) The Maillard reaction and oxidative stress during aging of soybean seeds. Physiol Plant 94:94–104CrossRefGoogle Scholar
  42. 42.
    Elliott GD, Wang S, Fuller BJ (2017) Cryoprotectants: a review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology 76:74–91PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Arakawa T, Timasheff SN (1985) The stabilization of proteins by osmolytes. Biophys J 47:411–414PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Westh P (2004) Preferential interaction of dimethyl sulfoxide and phosphatidyl choline membranes. Biochim Biophys Acta 1664:217–223PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Oldenhof H, Friedel K, Sieme H, Glasmacher B, Wolkers WF (2010) Freezing-induced membrane phase changes and water transport in stallion sperm: a Fourier transform infrared spectroscopy study. Cryobiology 61:115–122PubMedCrossRefGoogle Scholar
  46. 46.
    Akhoondi M, Oldenhof H, Stoll C, Sieme H, Wolkers WF (2011) Membrane hydraulic permeability changes during cooling of mammalian cells. Biochim Biophys Acta 1808:642–648PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Slade L, Levine H (1991) Beyond water activity: recent advances based on an alternative approach to the assessment of food quality and safety. Crit Rev Food Sci Nutr 30:115–136PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Cordone L, Cottone G, Giuffrida S (2007) Role of residual water hydrogen bonding in sugar/water/biomolecule systems: a possible explanation for trehalose peculiarity. J Physics Condens Matter 19:205110CrossRefGoogle Scholar
  49. 49.
    Wolkers WF, Oldenhof H, Glasmacher B (2010) Effect of trehalose on dehydration kinetics of phospholipid vesicles, as measured in real time using ATR infrared spectroscopy. Cryobiology 61:108–114PubMedCrossRefGoogle Scholar
  50. 50.
    Wolfe J, Bryant G (1999) Freezing, drying and/or vitrification of membrane-solute-water systems. Cryobiology 39:103–129PubMedCrossRefGoogle Scholar
  51. 51.
    Crowe JH, Crowe LM, Wolkers WF, Oliver AE, Ma X, Auh JH, Tang M, Zhu S, Norris J, Tablin F (2005) Stabilization of dry mammalian cells: lessons from nature. Integr Comp Biol 45:810–820PubMedCrossRefGoogle Scholar
  52. 52.
    Buitink J, Leprince O (2004) Glass formation in plant anhydrobiotes: survival in the dry state. Cryobiology 48:215–228PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Sydykov B, Oldenhof H, Sieme H, Wolkers WF (2017) Hydrogen bonding interactions and enthalpy relaxation in sugar-protein glasses. J Pharm Sci 106:761–769PubMedCrossRefGoogle Scholar
  54. 54.
    Oldenhof H, Zhang M, Narten K, Bigalk J, Sydykov B, Wolkers WF, Sieme H (2017) Freezing-induced uptake of disaccharides for preservation of chromatin in freeze-dried sperm during accelerated aging. Biol Reprod 97:892–890PubMedCrossRefGoogle Scholar
  55. 55.
    Roos Y, Karel M (1991) Water and molecular weight effects on glass transition in amorphous carbohydrates and carbohydrate solutions. J Food Sci 56:1676–1681CrossRefGoogle Scholar
  56. 56.
    Wolkers WF, Balasubramanian SK, Ongstad EL, Zec H, Bischof JC (2007) Effects of freezing on membranes and proteins in LNCaP prostate tumor cells. Biochim Biophys Acta 1768:728–736PubMedCrossRefGoogle Scholar
  57. 57.
    Agca Y, Mullen S, Liu J, Johnson-Ward J, Gould K, Chan A, Critser J (2005) Osmotic tolerance and membrane permeability characteristics of rhesus monkey (Macaca mulatta) spermatozoa. Cryobiology 51:1–14PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Leibo SP (1980) Water permeability and its activation energy of fertilized and unfertilized mouse ova. J Membr Biol 53:179–188PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Devireddy RV, Swanlund DJ, Olin T, Vincente W, Troedsson MHT, Bischof JC, Roberts KP (2002) Cryopreservation of equine sperm: optimal cooling rates in the presence and absence of cryoprotective agents determined using differential scanning calorimetry. Biol Reprod 66:222–231PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Mazur P, Leibo SP, Miller RH (1974) Permeability of the bovine red cell to glycerol in hyperosmotic solutions at various temperatures. J Membr Biol 15:107–136PubMedCrossRefGoogle Scholar
  61. 61.
    Kleinhans FW (1998) Membrane permeability modeling: Kedem-Katchalsky vs a two-parameter formalism. Cryobiology 37:271–289PubMedCrossRefGoogle Scholar
  62. 62.
    Kedem O, Katchalsky A (1985) Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim Biophys Acta 27:229–246CrossRefGoogle Scholar
  63. 63.
    Benson JD (2015) Modeling and optimization of cryopreservation. In: Wolkers WF, Oldenhof H (eds) Methods in cryopreservation and freeze-drying, methods in molecular biology. Springer, New York, pp 83–120Google Scholar
  64. 64.
    Toupin CJ, Le Maguer M, McGann LE (1989) Permeability of human granulocytes to water: rectification of osmotic flow. Cryobiology 26:431–444PubMedCrossRefGoogle Scholar
  65. 65.
    Peckys DB, Kleinhans FW, Mazur P (2011) Rectification of the water permeability in COS-7 cells at 22, 10 and 0°C. PLoS One 6:e23643PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Eroglu A, Russo MJ, Bieganski R, Fowler A, Cheley S, Bayley H, Toner M (2000) Intracellular trehalose improves the survival of cryopreserved mammalian cells. Nat Biotechnol 18:163–167PubMedCrossRefGoogle Scholar
  67. 67.
    Lynch AL, Chen R, Dominowski PJ, Shalaev EY, Yancey RJ, Slater NK (2010) Biopolymer mediated trehalose uptake for enhanced erythrocyte cryosurvival. Biomaterials 31:6096–6103PubMedCrossRefGoogle Scholar
  68. 68.
    Wei Y, Li C, Zhang L, Xu X (2014) Design of novel cell penetrating peptides for the delivery of trehalose into mammalian cells. Biochim Biophys Acta 1838:1911–1920PubMedCrossRefGoogle Scholar
  69. 69.
    Abazari A, Meimetis LG, Budin G, Bale SS, Weissleder R, Toner M (2015) Engineered trehalose permeable to mammalian cells. PLoS One 10:e0130323PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Rao W, Huang H, Wang H, Zhao S, Dumbleton J, Zhao G, He X (2015) Nanoparticle-mediated intracellular delivery enables cryopreservation of human adipose-derived stem cells using trehalose as the sole cryoprotectant. ACS Appl Mater Interfaces 7:5017–5028PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Zhang W, Rong J, Wang Q, He X (2009) The encapsulation and intracellular delivery of trehalose using a thermally responsive nanocapsule. Nanotechnology 20:275101PubMedCrossRefGoogle Scholar
  72. 72.
    Shirakashi R, Köstner CM, Müller KJ, Kürschner M, Zimmermann U, Sukhorukov VL (2002) Intracellular delivery of trehalose into mammalian cells by electropermeabilization. J Membr Biol 189:45–54PubMedCrossRefGoogle Scholar
  73. 73.
    Puhlev I, Guo N, Brown DR, Levine F (2001) Desiccation tolerance in human cells. Cryobiology 42:207–217PubMedCrossRefGoogle Scholar
  74. 74.
    Wolkers WF, Walker NJ, Tablin F, Crowe JH (2001) Human platelets loaded with trehalose survive freeze-drying. Cryobiology 42:79–87PubMedCrossRefGoogle Scholar
  75. 75.
    Beattie GM, Crowe JH, Lopez AD, Cirulli V, Ricordi C, Hayek A (1997) Trehalose: a cryoprotectant that enhances recovery and preserves function of human pancreatic islets after long-term storage. Diabetes 46:519–523PubMedCrossRefGoogle Scholar
  76. 76.
    Zhang M, Oldenhof H, Sieme H, Wolkers WF (2016) Freezing-induced uptake of trehalose into mammalian cells facilitates cryopreservation. Biochim Biophys Acta 1858:1400–1409PubMedCrossRefGoogle Scholar
  77. 77.
    Stoll C, Holovati JL, Acker JP, Wolkers WF (2012) Synergistic effects of liposomes, trehalose and hydroxyethyl starch for cryopreservation of human erythrocytes. Biotechnol Prog 28:364–371PubMedCrossRefGoogle Scholar
  78. 78.
    Gläfke C, Akhoondi M, Oldenhof H, Sieme H, Wolkers WF (2012) Cryopreservation of platelets using trehalose: the role of membrane phase behavior during freezing. Biotechnol Prog 28:1347–1354PubMedCrossRefGoogle Scholar
  79. 79.
    Zhang M, Oldenhof H, Sydykov B, Bigalk J, Sieme H, Wolkers WF (2017) Freeze-drying of mammalian cells using trehalose: preservation of DNA integrity. Sci Rep 7:6198PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Shaozhi Z, Pegg DE (2007) Analysis of the permeation of cryoprotectants in cartilage. Cryobiology 54:146–153PubMedCrossRefGoogle Scholar
  81. 81.
    Abazari A, Elliott JAW, McGann LE, Thompson RB (2012) MR spectroscopy measurement of the diffusion of dimethyl sulfoxide in articular cartilage and comparison to theoretical predictions. Osteoarthr Cartil 20:1004–1010CrossRefGoogle Scholar
  82. 82.
    Bischof JC, Mahr B, Choi JH, Behling M, Mewes D (2007) Use of X-ray tomography to map crystalline and amorphous phases in frozen biomaterials. Ann Biomed Eng 35:292–304PubMedCrossRefGoogle Scholar
  83. 83.
    Corral A, Balcerzyk M, Parrado-Gallego Á, Fernández-Gómez I, Lamprea DR, Olmo A, Risco R (2015) Assessment of the cryoprotectant concentration inside a bulky organ for cryopreservation using X-ray computed tomography. Cryobiology 71:419–431PubMedCrossRefGoogle Scholar
  84. 84.
    Sharma R, Law GK, Rekieh K, Abazari A, Elliott JA, McGann LE, Jomha NM (2007) A novel method to measure cryoprotectant permeation into intact articular cartilage. Cryobiology 54:196–203PubMedCrossRefGoogle Scholar
  85. 85.
    Jomha NM, Law GK, Abazari A, Rekieh K, Elliott JAW, McGann LE (2009) Permeation of several cryoprotectant agents into porcine articular cartilage. Cryobiology 58:110–114PubMedCrossRefGoogle Scholar
  86. 86.
    Vásquez-Rivera A, Sommer KK, Oldenhof H, Higgins AZ, Brockbank KGM, Hilfiker A, Wolkers WF (2018) Simultaneous monitoring of different vitrification solution components permeating into tissues. Analyst 143:420–428PubMedCrossRefGoogle Scholar
  87. 87.
    Marzi J, Biermann AC, Brauchle EM, Brockbank KGM, Stock UA, Schenke-Layland K (2019) Marker-independent in situ quantitative assessment of residual cryoprotectants in cardiac tissues. Anal Chem 91:2266–2272PubMedCrossRefGoogle Scholar
  88. 88.
    Han J, Sydykov B, Yang H, Sieme H, Oldenhof H, Wolkers WF (2019) Spectroscopic monitoring of transport processes during loading of ovarian tissue with cryoprotective solutions. Sci Rep 9:15577PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Polge C, Smith AU, Parkes AS (1949) Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 164:666PubMedCrossRefGoogle Scholar
  90. 90.
    Sieme H, Oldenhof H, Wolkers WF (2015) Sperm membrane behaviour during cooling and cryopreservation. Reprod Domest Anim 50(Suppl 3):20–26PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Rowe AW, Eyster E, Kellner A (1968) Liquid nitrogen preservation of red blood cells for transfusion: a low glycerol - rapid freeze procedure. Cryobiology 5:119–128PubMedCrossRefGoogle Scholar
  92. 92.
    Tullis JL, Gibson JG, Sproul MT, Tinch RJ, Baudanze P (1970) Advantages of the high glycerol mechanical systems for red cell preservation: a 10-year study of stability and yield. In: Spielmann W, Seidl S (eds) Modern problems of plood preservation. Fischer, Stuttgart, pp 161–167Google Scholar
  93. 93.
    Lovelock JE, Bishop MW (1959) Prevention of freezing damage to living cells by dimethyl sulphoxide. Nature 183:1394–1395PubMedCrossRefGoogle Scholar
  94. 94.
    Sydykov B, Oldenhof H, de Oliveira BL, Sieme H, Wolkers WF (2018) Membrane permeabilization of phosphatidylcholine liposomes induced by cryopreservation and vitrification solutions. Biochim Biophys Acta 1860:467–474CrossRefGoogle Scholar
  95. 95.
    Gordeliy VI, Kiselev MA, Lesieur P, Pole AV, Teixeira J (1998) Lipid membrane structure and interactions in dimethyl sulfoxide/water mixtures. Biophys J 75:2343–2351PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Oldenhof H, Bigalk J, Hettel C, Oliveira Barros L, Sydykov B, Bajcsy ÁC, Sieme H, Wolkers WF (2017) Stallion sperm cryopreservation using various permeating agents: interplay between concentration and cooling rate. Biopres Biobank 15:422–431CrossRefGoogle Scholar
  97. 97.
    Fahy GM, MacFarlane DR, Angell CA, Meryman HT (1984) Vitrification as an approach to cryopreservation. Cryobiology 21:407–426PubMedCrossRefGoogle Scholar
  98. 98.
    Benson JD, Higgins AZ, Desai K, Eroglu A (2017) A toxicity cost function approach to optimal CPA equilibration in tissues. Cryobiology 80:144–155PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Elmoazzen HY, Poovadan A, Law GK, Elliott JA, McGann LE, Jomha NM (2007) Dimethyl sulfoxide toxicity kinetics in intact articular cartilage. Cell Tissue Bank 431:125–133CrossRefGoogle Scholar
  100. 100.
    Jin B, Kleinhans FW, Mazur P (2014) Survivals of mouse oocytes approach 100% after vitrification in 3-fold diluted media and ultra-rapid warming by an IR laser pulse. Cryobiology 68:419–430PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Manuchehrabadi N, Gao Z, Zhang J, Ring HL, Shao Q, Liu F, McDermott M, Fok A, Rabin Y, Brockbank KG, Garwood M, Haynes CL, Bischof JC (2017) Improved tissue cryopreservation using inductive heating of magnetic nanoparticles. Sci Transl Med 9:eaah4586PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Luo D, Yu C, He L, Lu C, Gao D (2006) Development of a single mode electromagnetic resonant cavity for rewarming of cryopreserved biomaterials. Cryobiology 53:288–293PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Adams GD, Cook I, Ward KR (2015) The principles of freeze-drying. In: Wolkers WF, Oldenhof H (eds) Methods in cryopreservation and freeze-drying, methods in molecular biology. Springer, New York, pp 121–143Google Scholar
  104. 104.
    Ma X, Jamil K, Macrae TH, Clegg JS, Russell JM, Villeneuve TS, Euloth M, Sun Y, Crowe JH, Tablin F, Oliver AE (2005) A small stress protein acts synergistically with trehalose to confer desiccation tolerance on mammalian cells. Cryobiology 51:15–28PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Wang S, Oldenhof H, Goecke T, Ramm R, Harder M, Haverich A, Hilfiker A, Wolkers WF (2015) Sucrose diffusion in decellularized heart valves for freeze-drying. Tissue Eng Part C Methods 21:922–931PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Vásquez-Rivera A, Oldenhof H, Dipresa D, Goecke T, Kouvaka A, Will F, Haverich A, Korossis S, Hilfiker A, Wolkers WF (2018) Use of sucrose to diminish pore formation in freeze-dried heart valves. Sci Rep 8:12982PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Gouk SS, Lim TM, Teoh SH, Sun WQ (2008) Alterations of human acellular tissue matrix by gamma irradiation: histology, biomechanical property, stability, in vitro cell repopulation, and remodeling. J Biomed Mater Res B Appl Biomater 84:205–217PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Zouhair S, Aguiari P, Iop L, Vásquez-Rivera A, Filippi A, Romanato F, Korossis S, Wolkers WF, Gerosa G (2019) Preservation strategies for decellularized pericardial scaffolds for off-the-shelf availability. Acta Biomater 84:208–221PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Wang S, Oldenhof H, Dai X, Haverich A, Hilfiker A, Harder M, Wolkers WF (2014) Protein stability in stored decellularized heart valve scaffolds and diffusion kinetics of protective molecules. Biochim Biophys Acta 1844:430–438PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438PubMedCrossRefGoogle Scholar
  111. 111.
    Sassi P, Caponi S, Ricci M, Morresi A, Oldenhof H, Wolkers WF, Fioretto D (2015) Infrared versus light scattering techniques to monitor the gel to liquid crystal phase transition in lipid membranes. J Raman Spectrosc 46:644–651CrossRefGoogle Scholar
  112. 112.
    Robertson RN (1983) The lively membranes. Cambridge University Press, Cambridge NY, p 206Google Scholar
  113. 113.
    Zhao G, Fu J (2017) Microfluidics for cryopreservation. Biotechnology Advances 35:323–336Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2021

Authors and Affiliations

  1. 1.Unit for Reproductive Medicine—Clinic for HorsesUniversity of Veterinary Medicine HannoverHannoverGermany
  2. 2.Biostabilization Laboratory—Lower Saxony Centre for Biomedical Engineering, Implant Research and DevelopmentUniversity of Veterinary Medicine HannoverHannoverGermany

Personalised recommendations