Skip to main content

Detection of Phosphorylation on Immunoprecipitates from Total Protein Extracts of Arabidopsis thaliana Seedlings

  • Protocol
  • First Online:
Plant Endosomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2177))

Abstract

Phosphorylation is a versatile posttranslational modification that can regulate the localization, stability, and conformation of proteins; protein–protein interactions; and enzyme activities. Phosphorylation of plasma membrane proteins, for example, can serve as recognition signals for ubiquitin ligases and hence can trigger its endocytic degradation. Key determinants of protein phosphorylation are kinases and phosphatases that are spatiotemporally regulated to phosphorylate or dephosphorylate specific target proteins. To understand the dynamics and regulatory mechanisms of protein phosphorylation, it is essential to analyze the phosphorylation status of the proteins and identify phosphorylation sites as well as the modifying enzymes. In this chapter, we describe methods that can be used for the detection of phosphoproteins that are immunoprecipitated from Arabidopsis total extracts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armengot L, Marques-Bueno MM, Jaillais Y (2016) Regulation of polar auxin transport by protein and lipid kinases. J Exp Bot 67(14):4015–4037. https://doi.org/10.1093/jxb/erw216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mithoe SC, Menke FL (2018) Regulation of pattern recognition receptor signalling by phosphorylation and ubiquitination. Curr Opin Plant Biol 45(Pt A):162–170. https://doi.org/10.1016/j.pbi.2018.07.008

    Article  CAS  PubMed  Google Scholar 

  3. Haruta M, Gray WM, Sussman MR (2015) Regulation of the plasma membrane proton pump (H(+)-ATPase) by phosphorylation. Curr Opin Plant Biol 28:68–75. https://doi.org/10.1016/j.pbi.2015.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yang W, Zhang W, Wang X (2017) Post-translational control of ABA signalling: the roles of protein phosphorylation and ubiquitination. Plant Biotechnol J 15(1):4–14. https://doi.org/10.1111/pbi.12652

    Article  CAS  PubMed  Google Scholar 

  5. Yin X, Wang X, Komatsu S (2018) Phosphoproteomics: protein phosphorylation in regulation of seed germination and plant growth. Curr Protein Pept Sci 19(4):401–412. https://doi.org/10.2174/1389203718666170209151048

    Article  CAS  PubMed  Google Scholar 

  6. Nguyen LK, Kolch W, Kholodenko BN (2013) When ubiquitination meets phosphorylation: a systems biology perspective of EGFR/MAPK signalling. Cell Commun Signal 11:52. https://doi.org/10.1186/1478-811X-11-52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dubeaux G, Neveu J, Zelazny E, Vert G (2018) Metal sensing by the IRT1 transporter-receptor orchestrates its own degradation and plant metal nutrition. Mol Cell 69(6):953–964. e955. https://doi.org/10.1016/j.molcel.2018.02.009

    Article  CAS  PubMed  Google Scholar 

  8. Kinoshita E, Kinoshita-Kikuta E (2011) Improved Phos-tag SDS-PAGE under neutral pH conditions for advanced protein phosphorylation profiling. Proteomics 11(2):319–323. https://doi.org/10.1002/pmic.201000472

    Article  CAS  PubMed  Google Scholar 

  9. Kinoshita E, Kinoshita-Kikuta E, Takiyama K, Koike T (2006) Phosphate-binding tag, a new tool to visualize phosphorylated proteins. Mol Cell Proteomics 5(4):749–757. https://doi.org/10.1074/mcp.T500024-MCP200

    Article  CAS  PubMed  Google Scholar 

  10. Kinoshita E, Kinoshita-Kikuta E, Koike T (2015) Advances in Phos-tag-based methodologies for separation and detection of the phosphoproteome. Biochim Biophys Acta 1854(6):601–608. https://doi.org/10.1016/j.bbapap.2014.10.004

    Article  CAS  PubMed  Google Scholar 

  11. Heazlewood JL, Durek P, Hummel J, Selbig J, Weckwerth W, Walther D, Schulze WX (2008) PhosPhAt: a database of phosphorylation sites in Arabidopsis thaliana and a plant-specific phosphorylation site predictor. Nucleic Acids Res 36(Database issue):D1015–D1021. https://doi.org/10.1093/nar/gkm812

    Article  CAS  PubMed  Google Scholar 

  12. Gao J, Agrawal GK, Thelen JJ, Xu D (2009) P3DB: a plant protein phosphorylation database. Nucleic Acids Res 37(Database issue):D960–D962. https://doi.org/10.1093/nar/gkn733

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erika Isono .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vogel, K., Isono, E. (2020). Detection of Phosphorylation on Immunoprecipitates from Total Protein Extracts of Arabidopsis thaliana Seedlings. In: Otegui, M. (eds) Plant Endosomes. Methods in Molecular Biology, vol 2177. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0767-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0767-1_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0766-4

  • Online ISBN: 978-1-0716-0767-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics