Skip to main content

Synthesis of a Light-Controlled Phytochrome-Based Extracellular Matrix with Reversibly Adjustable Mechanical Properties

Part of the Methods in Molecular Biology book series (MIMB,volume 2173)

Abstract

Synthetic extracellular matrices with reversibly adjustable mechanical properties are essential for the investigation of how cells respond to dynamic mechanical cues as occurring in living organisms. One interesting approach to engineer dynamic biomaterials is the incorporation of photoreceptors from cyanobacteria or plants into polymer materials. Here, we give an overview of existing photoreceptor-based biomaterials and describe a detailed protocol for the synthesis of a phytochrome-based extracellular matrix (CyPhyGel). Using cell-compatible light in the red and far-red spectrum, the mechanical properties of this matrix can be adjusted in a fully reversible, wavelength-specific, and dose-dependent manner with high spatiotemporal control.

Key words

  • Biomaterials
  • Extracellular matrix
  • Hydrogels
  • Optogenetics
  • Phytochromes
  • Mechanosensing

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-0755-8_15
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-0755-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Watt FM, Huck WT (2013) Role of the extracellular matrix in regulating stem cell fate. Nat Rev Mol Cell Biol 14(8):467–473. https://doi.org/10.1038/nrm3620

    CAS  CrossRef  PubMed  Google Scholar 

  2. Burdick JA, Murphy WL (2012) Moving from static to dynamic complexity in hydrogel design. Nat Commun 3:1269. https://doi.org/10.1038/ncomms2271

    CAS  CrossRef  PubMed  Google Scholar 

  3. Rosales AM, Anseth KS (2016) The design of reversible hydrogels to capture extracellular matrix dynamics. Nat Rev Mater 1:15012. https://doi.org/10.1038/natrevmats.2015.12

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  4. Uto K, Tsui JH, DeForest CA, Kim DH (2017) Dynamically tunable cell culture platforms for tissue engineering and mechanobiology. Prog Polym Sci 65:53–82. https://doi.org/10.1016/j.progpolymsci.2016.09.004

    CAS  CrossRef  PubMed  Google Scholar 

  5. Kloxin AM, Kasko AM, Salinas CN, Anseth KS (2009) Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324(5923):59–63. https://doi.org/10.1126/science.1169494

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  6. Guvendiren M, Burdick JA (2012) Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics. Nat Commun 3:792. https://doi.org/10.1038/ncomms1792

    CAS  CrossRef  PubMed  Google Scholar 

  7. Zhang XL, Dong CM, Huang WY, Wang HM, Wang L, Ding D, Zhou H, Long JF, Wang TL, Yang ZM (2015) Rational design of a photo-responsive UVR8-derived protein and a self-assembling peptide-protein conjugate for responsive hydrogel formation. Nanoscale 7(40):16666–16670. https://doi.org/10.1039/c5nr05213k

    CAS  CrossRef  PubMed  Google Scholar 

  8. Liu LM, Shadish JA, Arakawa CK, Shi K, Davis J, DeForest CA (2018) Cyclic stiffness modulation of cell-laden protein-polymer hydrogels in response to user-specified stimuli including light. Adv Biosyst 2(12):1800240. https://doi.org/10.1002/Adbi.201800240

    CrossRef  Google Scholar 

  9. Lyu S, Fang J, Duan T, Fu L, Liu J, Li H (2017) Optically controlled reversible protein hydrogels based on photoswitchable fluorescent protein Dronpa. Chem Commun (Camb) 53(100):13375–13378. https://doi.org/10.1039/c7cc06991j

    CAS  CrossRef  Google Scholar 

  10. Wu X, Huang WM, Wu WH, Xue B, Xiang DF, Li Y, Qin M, Sun F, Wang W, Zhang WB, Cao Y (2018) Reversible hydrogels with tunable mechanical properties for optically controlling cell migration. Nano Res 11(10):5556–5565. https://doi.org/10.1007/s12274-017-1890-y

    CAS  CrossRef  Google Scholar 

  11. Wang R, Yang Z, Luo J, Hsing IM, Sun F (2017) B12-dependent photoresponsive protein hydrogels for controlled stem cell/protein release. Proc Natl Acad Sci U S A 114(23):5912–5917. https://doi.org/10.1073/pnas.1621350114

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  12. Hörner M, Raute K, Hummel B, Madl J, Creusen G, Thomas OS, Christen EH, Hotz N, Gübeli RJ, Engesser R, Rebmann B, Lauer J, Rolauffs B, Timmer J, Schamel WWA, Pruszak J, Römer W, Zurbriggen MD, Friedrich C, Walther A, Minguet S, Sawarkar R, Weber W (2019) Phytochrome-based extracellular matrix with reversibly tunable mechanical properties. Adv Mater 31(12):e1806727. https://doi.org/10.1002/adma.201806727

    CAS  CrossRef  PubMed  Google Scholar 

  13. Kolar K, Knobloch C, Stork H, Znidaric M, Weber W (2018) OptoBase: a web platform for molecular optogenetics. ACS Synth Biol 7(7):1825–1828. https://doi.org/10.1021/acssynbio.8b00120

    CAS  CrossRef  PubMed  Google Scholar 

  14. Mailliet J, Psakis G, Feilke K, Sineshchekov V, Essen LO, Hughes J (2011) Spectroscopy and a high-resolution crystal structure of Tyr263 mutants of cyanobacterial phytochrome Cph1. J Mol Biol 413(1):115–127. https://doi.org/10.1016/j.jmb.2011.08.023

    CAS  CrossRef  PubMed  Google Scholar 

  15. Hörner M, Gerhardt K, Salavei P, Hoess P, Harrer D, Kaiser J, Tabor JJ, Weber W (2019) Production of phytochromes by high-cell-density E. coli fermentation. ACS Synth Biol. https://doi.org/10.1021/acssynbio.9b00267

  16. https://doi.org/10.3389/fphys.2019.01526

  17. Berkelman TR, Lagarias JC (1986) Visualization of Bilin-linked peptides and proteins in polyacrylamide gels. Anal Biochem 156(1):194–201

    CAS  CrossRef  Google Scholar 

Download references

Acknowledgments

This work was funded by the German Research Foundation (DFG) under the Excellence Initiative (BIOSS—EXC-294) and the Excellence Strategy (CIBSS—EXC-2189—Project ID 390939984) as well as through the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement n° 259043-CompBioMat.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maximilian Hörner or Wilfried Weber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Hörner, M., Hoess, P., Emig, R., Rebmann, B., Weber, W. (2020). Synthesis of a Light-Controlled Phytochrome-Based Extracellular Matrix with Reversibly Adjustable Mechanical Properties. In: Niopek, D. (eds) Photoswitching Proteins . Methods in Molecular Biology, vol 2173. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0755-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0755-8_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0754-1

  • Online ISBN: 978-1-0716-0755-8

  • eBook Packages: Springer Protocols