Skip to main content

Prediction of Intrinsic Disorder with Quality Assessment Using QUARTER

  • Protocol
  • First Online:
Protein Structure Prediction

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2165))

Abstract

Intrinsically disordered regions (IDRs) are estimated to be highly abundant in nature. While only several thousand proteins are annotated with experimentally derived IDRs, computational methods can be used to predict IDRs for the millions of currently uncharacterized protein chains. Several dozen disorder predictors were developed over the last few decades. While some of these methods provide accurate predictions, unavoidably they also make some mistakes. Consequently, one of the challenges facing users of these methods is how to decide which predictions can be trusted and which are likely incorrect. This practical problem can be solved using quality assessment (QA) scores that predict correctness of the underlying (disorder) predictions at a residue level. We motivate and describe a first-of-its-kind toolbox of QA methods, QUARTER (QUality Assessment for pRotein inTrinsic disordEr pRedictions), which provides the scores for a diverse set of ten disorder predictors. QUARTER is available to the end users as a free and convenient webserver at http://biomine.cs.vcu.edu/servers/QUARTER/. We briefly describe the predictive architecture of QUARTER and provide detailed instructions on how to use the webserver. We also explain how to interpret results produced by QUARTER with the help of a case study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Habchi J, Tompa P, Longhi S, Uversky VN (2014) Introducing protein intrinsic disorder. Chem Rev 114(13):6561–6588

    CAS  PubMed  Google Scholar 

  2. Lieutaud P, Ferron F, Uversky AV, Kurgan L, Uversky VN, Longhi S (2016) How disordered is my protein and what is its disorder for? A guide through the “dark side” of the protein universe. Intrinsically Disord Proteins 4(1):e1259708

    PubMed  PubMed Central  Google Scholar 

  3. Keith Dunker A, Barbar E, Blackledge M, Bondos SE, Dosztányi Z, Jane Dyson H, Forman-Kay J, Fuxreiter M, Gsponer J, Han K-H, Jones DT, Longhi S, Metallo SJ, Nishikawa K, Nussinov R, Obradovic Z, Pappu RV, Rost B, Selenko P, Subramaniam V, Sussman JL, Tompa P, Uversky VN (2013) What’s in a name? Why these proteins are intrinsically disordered. Intrinsically Disord Proteins 1(1):e24157

    PubMed  PubMed Central  Google Scholar 

  4. van der Lee R, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW, Dunker AK, Fuxreiter M, Gough J, Gsponer J, Jones DT, Kim PM, Kriwacki RW, Oldfield CJ, Pappu RV, Tompa P, Uversky VN, Wright PE, Babu MM (2014) Classification of intrinsically disordered regions and proteins. Chem Rev 114(13):6589–6631

    PubMed  PubMed Central  Google Scholar 

  5. Peng Z, Yan J, Fan X, Mizianty MJ, Xue B, Wang K, Hu G, Uversky VN, Kurgan L (2015) Exceptionally abundant exceptions: comprehensive characterization of intrinsic disorder in all domains of life. Cell Mol Life Sci 72(1):137–151

    CAS  PubMed  Google Scholar 

  6. Xue B, Dunker AK, Uversky VN (2012) Orderly order in protein intrinsic disorder distribution: disorder in 3500 proteomes from viruses and the three domains of life. J Biomol Struct Dyn 30(2):137–149

    CAS  PubMed  Google Scholar 

  7. Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337(3):635–645

    CAS  PubMed  Google Scholar 

  8. Hu G, Wang K, Song J, Uversky VN, Kurgan L (2018) Taxonomic landscape of the dark proteomes: whole-proteome scale interplay between structural darkness, intrinsic disorder, and crystallization propensity. Proteomics 18(21–22):e1800243

    PubMed  Google Scholar 

  9. Dunker AK, Obradovic Z, Romero P, Garner EC, Brown CJ (2000) Intrinsic protein disorder in complete genomes. Genome Inform Ser Workshop Genome Inform 11:161–171

    CAS  PubMed  Google Scholar 

  10. Peng Z, Mizianty MJ, Kurgan L (2014) Genome-scale prediction of proteins with long intrinsically disordered regions. Proteins 82(1):145–158

    CAS  PubMed  Google Scholar 

  11. Wang C, Uversky VN, Kurgan L (2016) Disordered nucleiome: abundance of intrinsic disorder in the DNA- and RNA-binding proteins in 1121 species from Eukaryota, Bacteria and Archaea. Proteomics 16(10):1486–1498

    CAS  PubMed  Google Scholar 

  12. Romero PR, Zaidi S, Fang YY, Uversky VN, Radivojac P, Oldfield CJ, Cortese MS, Sickmeier M, LeGall T, Obradovic Z, Dunker AK (2006) Alternative splicing in concert with protein intrinsic disorder enables increased functional diversity in multicellular organisms. Proc Natl Acad Sci U S A 103(22):8390–8395

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hu G, Wu Z, Uversky VN, Kurgan L (2017) Functional analysis of human hub proteins and their interactors involved in the intrinsic disorder-enriched interactions. Int J Mol Sci 18(12)

    Google Scholar 

  14. Na I, Meng F, Kurgan L, Uversky VN (2016) Autophagy-related intrinsically disordered proteins in intra-nuclear compartments. Mol BioSyst 12(9):2798–2817

    CAS  PubMed  Google Scholar 

  15. Meng F, Na I, Kurgan L, Uversky VN (2016) Compartmentalization and functionality of nuclear disorder: intrinsic disorder and protein-protein interactions in intra-nuclear compartments. Int J Mol Sci 17(1)

    Google Scholar 

  16. Xue B, Blocquel D, Habchi J, Uversky AV, Kurgan L, Uversky VN, Longhi S (2014) Structural disorder in viral proteins. Chem Rev 114(13):6880–6911

    CAS  PubMed  Google Scholar 

  17. Peng Z, Oldfield CJ, Xue B, Mizianty MJ, Dunker AK, Kurgan L, Uversky VN (2014) A creature with a hundred waggly tails: intrinsically disordered proteins in the ribosome. Cell Mol Life Sci 71(8):1477–1504

    CAS  PubMed  Google Scholar 

  18. Fuxreiter M, Toth-Petroczy A, Kraut DA, Matouschek A, Lim RY, Xue B, Kurgan L, Uversky VN (2014) Disordered proteinaceous machines. Chem Rev 114(13):6806–6843

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Fan X, Xue B, Dolan PT, LaCount DJ, Kurgan L, Uversky VN (2014) The intrinsic disorder status of the human hepatitis C virus proteome. Mol BioSyst 10(6):1345–1363

    CAS  PubMed  Google Scholar 

  20. Peng Z, Xue B, Kurgan L, Uversky VN (2013) Resilience of death: intrinsic disorder in proteins involved in the programmed cell death. Cell Death Differ 20(9):1257–1267

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Xue B, Mizianty MJ, Kurgan L, Uversky VN (2012) Protein intrinsic disorder as a flexible armor and a weapon of HIV-1. Cell Mol Life Sci 69(8):1211–1259

    CAS  PubMed  Google Scholar 

  22. Peng Z, Mizianty MJ, Xue B, Kurgan L, Uversky VN (2012) More than just tails: intrinsic disorder in histone proteins. Mol BioSyst 8(7):1886–1901

    CAS  PubMed  Google Scholar 

  23. Buljan M, Chalancon G, Dunker AK, Bateman A, Balaji S, Fuxreiter M, Babu MM (2013) Alternative splicing of intrinsically disordered regions and rewiring of protein interactions. Curr Opin Struct Biol 23(3):443–450

    CAS  PubMed  Google Scholar 

  24. Korneta I, Bujnicki JM (2012) Intrinsic disorder in the human spliceosomal proteome. PLoS Comput Biol 8(8):e1002641

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Dyson HJ (2012) Roles of intrinsic disorder in protein-nucleic acid interactions. Mol BioSyst 8(1):97–104

    CAS  PubMed  Google Scholar 

  26. Dunker AK, Silman I, Uversky VN, Sussman JL (2008) Function and structure of inherently disordered proteins. Curr Opin Struct Biol 18(6):756–764

    CAS  PubMed  Google Scholar 

  27. Tompa P, Fuxreiter M, Oldfield CJ, Simon I, Dunker AK, Uversky VN (2009) Close encounters of the third kind: disordered domains and the interactions of proteins. BioEssays 31(3):328–335

    CAS  PubMed  Google Scholar 

  28. Varadi M, Zsolyomi F, Guharoy M, Tompa P (2015) Functional advantages of conserved intrinsic disorder in RNA-binding proteins. PLoS One 10(10):e0139731

    PubMed  PubMed Central  Google Scholar 

  29. Dosztanyi Z, Chen J, Dunker AK, Simon I, Tompa P (2006) Disorder and sequence repeats in hub proteins and their implications for network evolution. J Proteome Res 5(11):2985–2995

    CAS  PubMed  Google Scholar 

  30. Pancsa R, Tompa P (2016) Coding regions of intrinsic disorder accommodate parallel functions. Trends Biochem Sci 41(11):898–906

    CAS  PubMed  Google Scholar 

  31. Tantos A, Kalmar L, Tompa P (2015) The role of structural disorder in cell cycle regulation, related clinical proteomics, disease development and drug targeting. Expert Rev Proteomics 12(3):221–233

    CAS  PubMed  Google Scholar 

  32. Campen A, Williams RM, Brown CJ, Meng J, Uversky VN, Dunker AK (2008) TOP-IDP-scale: a new amino acid scale measuring propensity for intrinsic disorder. Protein Pept Lett 15(9):956–963

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Peng ZL, Kurgan L (2012) Comprehensive comparative assessment of in-silico predictors of disordered regions. Curr Protein Pept Sci 13(1):6–18

    CAS  PubMed  Google Scholar 

  34. Walsh I, Giollo M, Di Domenico T, Ferrari C, Zimmermann O, Tosatto SCE (2015) Comprehensive large-scale assessment of intrinsic protein disorder. Bioinformatics 31(2):201–208

    CAS  PubMed  Google Scholar 

  35. Meng F, Uversky VN, Kurgan L (2017) Comprehensive review of methods for prediction of intrinsic disorder and its molecular functions. Cell Mol Life Sci 74(17):3069–3090

    CAS  PubMed  Google Scholar 

  36. Meng F, Uversky V, Kurgan L (2017) Computational prediction of intrinsic disorder in proteins. Curr Protoc Protein Sci 88:12.16.11–12.16.14

    Google Scholar 

  37. He B, Wang K, Liu Y, Xue B, Uversky VN, Dunker AK (2009) Predicting intrinsic disorder in proteins: an overview. Cell Res 19(8):929–949

    CAS  PubMed  Google Scholar 

  38. Uversky VN, Radivojac P, Iakoucheva LM, Obradovic Z, Dunker AK (2007) Prediction of intrinsic disorder and its use in functional proteomics. Methods Mol Biol 408:69–92

    CAS  PubMed  Google Scholar 

  39. Necci M, Piovesan D, Dosztanyi Z, Tompa P, Tosatto SCE (2017) A comprehensive assessment of long intrinsic protein disorder from the DisProt database. Bioinformatics 34(3):445–452

    Google Scholar 

  40. Linding R, Jensen LJ, Diella F, Bork P, Gibson TJ, Russell RB (2003) Protein disorder prediction: implications for structural proteomics. Structure (London, England: 1993) 11(11):1453–1459

    CAS  Google Scholar 

  41. Dosztányi Z, Csizmok V, Tompa P, Simon I (2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21(16):3433–3434

    PubMed  Google Scholar 

  42. Ward JJ, McGuffin LJ, Bryson K, Buxton BF, Jones DT (2004) The DISOPRED server for the prediction of protein disorder. Bioinformatics 20(13):2138–2139

    CAS  PubMed  Google Scholar 

  43. Peng K, Radivojac P, Vucetic S, Dunker AK, Obradovic Z (2006) Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics 7(1):208

    PubMed  PubMed Central  Google Scholar 

  44. Ishida T, Kinoshita K (2007) PrDOS: prediction of disordered protein regions from amino acid sequence. Nucleic Acids Res 35(Suppl 2):W460–W464

    PubMed  PubMed Central  Google Scholar 

  45. Walsh I, Martin AJM, Di Domenico T, Tosatto SCE (2012) ESpritz: accurate and fast prediction of protein disorder. Bioinformatics 28(4):503–509

    CAS  PubMed  Google Scholar 

  46. Mizianty MJ, Stach W, Chen K, Kedarisetti KD, Disfani FM, Kurgan L (2010) Improved sequence-based prediction of disordered regions with multilayer fusion of multiple information sources. Bioinformatics 26(18):i489–i496

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang T, Faraggi E, Xue B, Dunker AK, Uversky VN, Zhou Y (2012) SPINE-D: accurate prediction of short and long disordered regions by a single neural-network based method. J Biomol Struct Dyn 29(4):799–813

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Monastyrskyy B, Kryshtafovych A, Moult J, Tramontano A, Fidelis K (2014) Assessment of protein disorder region predictions in CASP10. Proteins 82(Suppl 2):127–137

    CAS  PubMed  Google Scholar 

  49. Wu Z, Hu G, Wang K, Kurgan L (2017) Exploratory analysis of quality assessment of putative intrinsic disorder in proteins. 6th International conference on artificial intelligence and soft computing, vol LNAI 10245. Zakopane, Poland

    Google Scholar 

  50. Kihara D, Chen H, Yang YD (2009) Quality assessment of protein structure models. Curr Protein Pept Sci 10(3):216–228

    CAS  PubMed  Google Scholar 

  51. Skwark MJ, Elofsson A (2013) PconsD: ultra rapid, accurate model quality assessment for protein structure prediction. Bioinformatics 29(14):1817–1818

    CAS  PubMed  Google Scholar 

  52. McGuffin LJ, Buenavista MT, Roche DB (2013) The ModFOLD4 server for the quality assessment of 3D protein models. Nucleic Acids Res 41(Web Server issue):W368–W372

    PubMed  PubMed Central  Google Scholar 

  53. Cao R, Bhattacharya D, Adhikari B, Li J, Cheng J (2016) Massive integration of diverse protein quality assessment methods to improve template based modeling in CASP11. Proteins 84(Suppl 1):247–259

    PubMed  Google Scholar 

  54. Cao R, Adhikari B, Bhattacharya D, Sun M, Hou J, Cheng J (2017) QAcon: single model quality assessment using protein structural and contact information with machine learning techniques. Bioinformatics 33(4):586–588

    CAS  PubMed  Google Scholar 

  55. Hu G, Wu Z, Oldfield C, Wang C, Kurgan L (2018) Quality assessment for the putative intrinsic disorder in proteins. Bioinformatics 35(10). https://doi.org/10.1093/bioinformatics/bty881

  56. Dosztanyi Z, Csizmok V, Tompa P, Simon I (2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21(16):3433–3434

    CAS  PubMed  Google Scholar 

  57. Linding R, Jensen LJ, Diella F, Bork P, Gibson TJ, Russell RB (2003) Protein disorder prediction: implications for structural proteomics. Structure 11(11):1453–1459

    CAS  PubMed  Google Scholar 

  58. Linding R, Russell RB, Neduva V, Gibson TJ (2003) GlobPlot: exploring protein sequences for globularity and disorder. Nucleic Acids Res 31(13):3701–3708

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Yang ZR, Thomson R, McNeil P, Esnouf RM (2005) RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins. Bioinformatics 21(16):3369–3376

    CAS  PubMed  Google Scholar 

  60. Piovesan D, Tabaro F, Paladin L, Necci M, Micetic I, Camilloni C, Davey N, Dosztanyi Z, Meszaros B, Monzon AM, Parisi G, Schad E, Sormanni P, Tompa P, Vendruscolo M, Vranken WF, Tosatto SCE (2018) MobiDB 3.0: more annotations for intrinsic disorder, conformational diversity and interactions in proteins. Nucleic Acids Res 46(D1):D471–D476

    CAS  PubMed  Google Scholar 

  61. Di Domenico T, Walsh I, Martin AJM, Tosatto SCE (2012) MobiDB: a comprehensive database of intrinsic protein disorder annotations. Bioinformatics 28(15):2080–2081

    PubMed  Google Scholar 

  62. Potenza E, Di Domenico T, Walsh I, Tosatto SC (2015) MobiDB 2.0: an improved database of intrinsically disordered and mobile proteins. Nucleic Acids Res 43(Database issue):D315–D320

    CAS  PubMed  Google Scholar 

  63. Oates ME, Romero P, Ishida T, Ghalwash M, Mizianty MJ, Xue B, Dosztanyi Z, Uversky VN, Obradovic Z, Kurgan L, Dunker AK, Gough J (2013) D(2)P(2): database of disordered protein predictions. Nucleic Acids Res 41(Database issue):D508–D516

    CAS  PubMed  Google Scholar 

  64. Necci M, Piovesan D, Dosztanyi Z, Tosatto SCE (2017) MobiDB-lite: fast and highly specific consensus prediction of intrinsic disorder in proteins. Bioinformatics 33(9):1402–1404

    CAS  PubMed  Google Scholar 

  65. Obradovic Z, Peng K, Vucetic S, Radivojac P, Dunker AK (2005) Exploiting heterogeneous sequence properties improves prediction of protein disorder. Proteins 61(Suppl 7):176–182

    CAS  PubMed  Google Scholar 

  66. Peng Z, Wang C, Uversky VN, Kurgan L (2017) Prediction of disordered RNA, DNA, and protein binding regions using DisoRDPbind. Methods Mol Biol 1484:187–203

    CAS  PubMed  Google Scholar 

  67. Meng F, Kurgan L (2016) DFLpred: high-throughput prediction of disordered flexible linker regions in protein sequences. Bioinformatics 32(12):i341–i350

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Song J, Li F, Leier A, Marquez-Lago TT, Akutsu T, Haffari G, Chou KC, Webb GI, Pike RN, Hancock J (2018) PROSPERous: high-throughput prediction of substrate cleavage sites for 90 proteases with improved accuracy. Bioinformatics 34(4):684–687

    CAS  PubMed  Google Scholar 

  69. Li F, Li C, Marquez-Lago TT, Leier A, Akutsu T, Purcell AW, Smith AI, Lithgow T, Daly RJ, Song J, Chou KC (2018) Quokka: a comprehensive tool for rapid and accurate prediction of kinase family-specific phosphorylation sites in the human proteome. Bioinformatics 34:4223

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Hippler M, Drepper F, Farah J, Rochaix JD (1997) Fast electron transfer from cytochrome c6 and plastocyanin to photosystem I of Chlamydomonas reinhardtii requires PsaF. Biochemistry 36(21):6343–6349

    CAS  PubMed  Google Scholar 

  71. Farah J, Rappaport F, Choquet Y, Joliot P, Rochaix JD (1995) Isolation of a psaF-deficient mutant of Chlamydomonas reinhardtii: efficient interaction of plastocyanin with the photosystem I reaction center is mediated by the PsaF subunit. EMBO J 14(20):4976–4984

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Hippler M, Drepper F, Haehnel W, Rochaix JD (1998) The N-terminal domain of PsaF: precise recognition site for binding and fast electron transfer from cytochrome c6 and plastocyanin to photosystem I of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 95(13):7339–7344

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Amunts A, Toporik H, Borovikova A, Nelson N (2010) Structure determination and improved model of plant photosystem I. J Biol Chem 285(5):3478–3486

    CAS  PubMed  Google Scholar 

  74. Oldfield CJ, Cheng Y, Cortese MS, Romero P, Uversky VN, Dunker AK (2005) Coupled folding and binding with alpha-helix-forming molecular recognition elements. Biochemistry 44(37):12454–12470

    CAS  PubMed  Google Scholar 

  75. Disfani FM, Hsu W-L, Mizianty MJ, Oldfield CJ, Xue B, Dunker AK, Uversky VN, Kurgan L (2012) MoRFpred, a computational tool for sequence-based prediction and characterization of short disorder-to-order transitioning binding regions in proteins. Bioinformatics 28(12):i75–i83

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Oldfield CJ, Uversky VN, Kurgan L (2018) Predicting functions of disordered proteins with MoRFpred. Methods Mol Biol 1851:337–352

    Google Scholar 

  77. Mohan A, Oldfield CJ, Radivojac P, Vacic V, Cortese MS, Dunker AK, Uversky VN (2006) Analysis of molecular recognition features (MoRFs). J Mol Biol 362(5):1043–1059

    CAS  PubMed  Google Scholar 

  78. Yan J, Dunker AK, Uversky VN, Kurgan L (2016) Molecular recognition features (MoRFs) in three domains of life. Mol BioSyst 12(3):697–710

    CAS  PubMed  Google Scholar 

  79. Faraggi E, Zhou YQ, Kloczkowski A (2014) Accurate single-sequence prediction of solvent accessible surface area using local and global features. Proteins 82(11):3170–3176

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Wootton JC, Federhen S (1993) Statistics of local complexity in amino-acid-sequences and sequence databases. Comput Chem 17(2):149–163

    CAS  Google Scholar 

  81. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157(1):105–132

    CAS  PubMed  Google Scholar 

  82. Vihinen M, Torkkila E, Riikonen P (1994) Accuracy of protein flexibility predictions. Proteins 19(2):141–149

    CAS  PubMed  Google Scholar 

  83. Wang C, Kurgan L (2019) Review and comparative assessment of similarity-based methods for prediction of drug-protein interactions in the druggable human proteome. Brief Bioinform 20(6):2066–2087

    PubMed  Google Scholar 

  84. Kurgan L, Razib AA, Aghakhani S, Dick S, Mizianty M, Jahandideh S (2009) CRYSTALP2: sequence-based protein crystallization propensity prediction. BMC Struct Biol 9:50

    PubMed  PubMed Central  Google Scholar 

  85. Kedarisetti P, Mizianty MJ, Kaas Q, Craik DJ, Kurgan L (2014) Prediction and characterization of cyclic proteins from sequences in three domains of life. Biochim Biophys Acta 1844(1 Pt B):181–190

    CAS  PubMed  Google Scholar 

  86. Mizianty MJ, Zhang T, Xue B, Zhou Y, Dunker AK, Uversky VN, Kurgan L (2011) In-silico prediction of disorder content using hybrid sequence representation. BMC Bioinformatics 12:245

    PubMed  PubMed Central  Google Scholar 

  87. Fan X, Kurgan L (2014) Accurate prediction of disorder in protein chains with a comprehensive and empirically designed consensus. J Biomol Struct Dyn 32(3):448–464

    CAS  PubMed  Google Scholar 

  88. Peng Z, Kurgan L (2015) High-throughput prediction of RNA, DNA and protein binding regions mediated by intrinsic disorder. Nucleic Acids Res 43(18):e121

    PubMed  PubMed Central  Google Scholar 

  89. Meng F, Kurgan L (2018) High-throughput prediction of disordered moonlighting regions in protein sequences. Proteins 86:1097

    CAS  PubMed  Google Scholar 

  90. Yan J, Kurgan L (2017) DRNApred, fast sequence-based method that accurately predicts and discriminates DNA- and RNA-binding residues. Nucleic Acids Res 45(10):e84

    PubMed  PubMed Central  Google Scholar 

  91. Meng F, Wang C, Kurgan L (2018) fDETECT webserver: fast predictor of propensity for protein production, purification, and crystallization. BMC Bioinformatics 18(1):580

    PubMed  PubMed Central  Google Scholar 

  92. Mizianty MJ, Fan X, Yan J, Chalmers E, Woloschuk C, Joachimiak A, Kurgan L (2014) Covering complete proteomes with X-ray structures: a current snapshot. Acta Crystallogr D Biol Crystallogr 70(Pt 11):2781–2793

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhang J, Ma Z, Kurgan L (2019) Comprehensive review and empirical analysis of hallmarks of DNA-, RNA- and protein-binding residues in protein chains. Brief Bioinform 20(4):1250–1268

    PubMed  Google Scholar 

  94. Hu G, Gao J, Wang K, Mizianty MJ, Ruan J, Kurgan L (2012) Finding protein targets for small biologically relevant ligands across fold space using inverse ligand binding predictions. Structure 20(11):1815–1822

    CAS  PubMed  Google Scholar 

  95. Mizianty MJ, Uversky V, Kurgan L (2014) Prediction of intrinsic disorder in proteins using MFDp2. Methods Mol Biol 1137:147–162

    CAS  PubMed  Google Scholar 

  96. Mizianty MJ, Peng ZL, Kurgan L (2013) MFDp2: accurate predictor of disorder in proteins by fusion of disorder probabilities, content and profiles. Intrinsically Disord Proteins 1(1):e24428

    PubMed  PubMed Central  Google Scholar 

  97. Chen K, Mizianty MJ, Kurgan L (2012) Prediction and analysis of nucleotide-binding residues using sequence and sequence-derived structural descriptors. Bioinformatics 28(3):331–341

    PubMed  Google Scholar 

  98. Mizianty MJ, Kurgan L (2011) Sequence-based prediction of protein crystallization, purification and production propensity. Bioinformatics 27(13):i24–i33

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Yan J, Mizianty MJ, Filipow PL, Uversky VN, Kurgan L (2013) RAPID: fast and accurate sequence-based prediction of intrinsic disorder content on proteomic scale. Biochim Biophys Acta 1834(8):1671–1680

    CAS  PubMed  Google Scholar 

  100. Yan J, Marcus M, Kurgan L (2014) Comprehensively designed consensus of standalone secondary structure predictors improves Q3 by over 3%. J Biomol Struct Dyn 32(1):36–51

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the National Science Foundation grant 1617369 and the Robert J. Mattauch Endowment funds to L.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukasz Kurgan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wu, Z., Hu, G., Oldfield, C.J., Kurgan, L. (2020). Prediction of Intrinsic Disorder with Quality Assessment Using QUARTER. In: Kihara, D. (eds) Protein Structure Prediction. Methods in Molecular Biology, vol 2165. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0708-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0708-4_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0707-7

  • Online ISBN: 978-1-0716-0708-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics