Skip to main content

Transforming FIB-SEM Systems for Large-Volume Connectomics and Cell Biology

Part of the Neuromethods book series (NM,volume 155)

Abstract

Isotropic high-resolution imaging of large volumes provides unprecedented opportunities to advance connectomics and cell biology research. Conventional focused ion beam scanning electron microscopy (FIB-SEM) offers unique benefits such as high resolution (<10 nm in x, y, and z), robust image alignment, and minimal artifacts for superior tracing of neurites. However, its prevailing deficiencies in imaging speed and duration cap the maximum possible image volume. We have developed technologies to overcome these limitations, thereby expanding the image volume of FIB-SEM by more than four orders of magnitude from 103 μm3 to 3 × 107 μm3 while maintaining an isotropic resolution of 8 × 8 × 8 nm3 voxels. These expanded volumes are now large enough to support connectomic studies, in which the superior z resolution enables automated tracing of fine neurites and reduces the time-consuming human proofreading effort. Moreover, by trading off imaging speed, the system can readily be operated at even higher resolutions achieving voxel sizes of 4 × 4 × 4 nm3, thereby generating ground truth of the smallest organelles for machine learning in connectomics and providing important insights into cell biology. Primarily limited by time, the maximum volume can be greatly extended.

In this chapter, we provide a detailed description of the enhanced FIB-SEM technology, which has transformed the conventional FIB-SEM from a laboratory tool that is unreliable for more than a few days to a robust imaging platform with long-term reliability: capable of years of continuous imaging without defects in the final image stack. An in-depth description of the systematic approach to optimize operating parameters based on resolution requirements and electron dose boundary conditions is also explicitly disclosed. We further explore how this technology unleashes the full potential of FIB-SEM systems, revolutionizing volume electron microscopy (EM) imaging for biology by gaining access to large sample volumes with single-digit nanoscale isotropic resolution.

Key words

  • Focused ion beam scanning electron microscopy (FIB-SEM)
  • Volume electron microscopy
  • 3D imaging
  • Large volume
  • 3D structure
  • Isotropic resolution
  • Connectomics
  • Cell biology
  • Drosophila
  • Mouse brain
  • Mammalian cell

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-0691-9_12
  • Chapter length: 23 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-0691-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Xu CS, Hayworth KJ, Lu Z et al (2017) Enhanced FIB-SEM systems for large-volume 3D imaging. eLife 6:e25916. https://doi.org/10.7554/eLife.25916

    CrossRef  PubMed  PubMed Central  Google Scholar 

  2. Xu, CS, Hayworth KJ, Hess HF (2020) Enhanced FIB-SEM systems for large-volume 3D imaging. US Patent 10,600,615, 24 Mar 2020

    Google Scholar 

  3. Heymann JA, Hayles M, Gestmann I et al (2006) Site-specific 3D imaging of cells and tissues with a dual beam microscope. J Struct Biol 155:63–73. https://doi.org/10.1016/j.jsb.2006.03.006

    CrossRef  PubMed  PubMed Central  Google Scholar 

  4. Harris KM, Perry E, Bourne J et al (2006) Uniform serial sectioning for transmission electron microscopy. J Neurosci 26:12101–12103. https://doi.org/10.1523/JNEUROSCI.3994-06.2006

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  5. Bock DD, Lee WC, Kerlin AM et al (2011) Network anatomy and in vivo physiology of visual cortical neurons. Nature 2011(471):177–182. https://doi.org/10.1038/nature09802

    CAS  CrossRef  Google Scholar 

  6. Hayworth KJ, Kasthuri N, Schalek R et al (2006) Automating the collection of ultrathin serial sections for large volume TEM reconstructions. Microsc Microanal 12:86–87. https://doi.org/10.1017/S1431927606066268

    CrossRef  Google Scholar 

  7. Denk W, Horstmann H (2004) Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol 2:e329. https://doi.org/10.1371/journal.pbio.0020329

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  8. Knott G, Marchman H, Wall D et al (2008) Serial section scanning electron microscopy of adult brain tissue using focused ion beam milling. J Neurosci 28:2959–2964. https://doi.org/10.1523/JNEUROSCI.3189-07.2008

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  9. Scheffer LK, Meinertzhagen IA (2019) The fly brain atlas. Annu Rev Cell Dev Biol 35:737–653. https://doi.org/10.1146/annurev-cellbio-100818-125444

    CAS  CrossRef  Google Scholar 

  10. Takemura SY, Bharioke A, Lu Z et al (2013) A visual motion detection circuit suggested by Drosophila connectomics. Nature 500:175–181. https://doi.org/10.1038/nature12450

  11. Xu CS, Januszewski M, Lu Z et al (2020) A connectome of the adult Drosophila central brain. bioRxiv:2020.01.21.911859. https://doi.org/10.1101/2020.01.21.911859

  12. Scheffer LK, Xu CS, Januszewski M et al (2020) A connectome and analysis of the adult Drosophila central brain. bioRxiv:2020.04.07.030213. https://doi.org/10.1101/2020.04.07.030213

    Google Scholar 

  13. Januszewski M, Kornfeld J, Li PH et al (2018) High-precision automated reconstruction of neurons with flood-filling networks. Nat Methods 15:605–610. https://doi.org/10.1038/s41592-018-0049-4

    CAS  CrossRef  PubMed  Google Scholar 

  14. Meinertzhagen IA (2016) Connectome studies on Drosophila: a short perspective on a tiny brain. J Neurogenet 30:62–68. https://doi.org/10.3109/01677063.2016.1166224

  15. Schneider-Mizell CM, Gerhard S, Longair M et al (2016) Quantitative neuroanatomy for connectomics in Drosophila. eLife 5:e12059. https://doi.org/10.7554/eLife.12059

    CrossRef  PubMed  PubMed Central  Google Scholar 

  16. Helmstaedter M (2013) Cellular-resolution connectomics: challenges of dense neural circuit reconstruction. Nat Methods 10(6):501–507. https://doi.org/10.1038/nmeth.2476

    CAS  CrossRef  PubMed  Google Scholar 

  17. Takemura SY, Xu CS, Lu Z et al (2015) Synaptic circuits and their variations within different columns in the visual system of Drosophila. PNAS 112:13711–13716. https://doi.org/10.1073/pnas.1509820112

    CAS  CrossRef  PubMed  Google Scholar 

  18. Shinomiya K, Huang G, Lu Z et al. (2019) Comparisons between the ON- and OFF-edge motion pathways in the Drosophila brain. eLife 8:e40025. doi: https://doi.org/10.7554/eLife.40025

  19. Takemura S, Aso Y, Hige T et al (2017) A connectome of a learning and memory center in the adult Drosophila brain. eLife 6:e26975. https://doi.org/10.7554/eLife.26975

    CrossRef  PubMed  PubMed Central  Google Scholar 

  20. Horne JA, Langille C, McLin S et al. (2018) A resource for the Drosophila antennal lobe provided by the connectome of glomerulus VA1v. eLife 7:e37500. doi: https://doi.org/10.7554/eLife.37550

  21. Titze B (2013) Techniques to prevent sample surface charging and reduce beam damage effects for SBEM imaging. Dissertation, Heidelberg University, pp 1–112

    Google Scholar 

  22. Calcagno L, Compagnini G, Foti G (1992) Structural modification of polymer films by ion irradiation. Nucl Instrum Methods Phys Res, Sect B 65(1–4):413–422. https://doi.org/10.1016/0168-583X(92)95077-5

    CrossRef  Google Scholar 

  23. Hayworth KJ, Xu CS, Lu Z et al (2015) Ultrastructurally smooth thick partitioning and volume stitching for large-scale connectomics. Nat Methods 12:319–322. https://doi.org/10.1038/nmeth.3292

  24. McGee-Russell SM, De Bruijn WC, Gosztonyi G (1990) Hot knife microtomy for large area sectioning and combined light and electron microscopy in neuroanatomy and neuropathology. J Neurocytol 19(5):655–661. https://doi.org/10.1007/BF01188034

    CAS  CrossRef  PubMed  Google Scholar 

  25. Lu Z, Xu CS, Hayworth KJ et al (2019) En bloc preparation of Drosophila brains enables high-throughput FIB-SEM connectomics. bioRxiv:855130. https://doi.org/10.1101/855130

  26. Gao R, Asano SM, Upadhyayula S et al (2019) Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution. Science 363(6424):eaau8302. https://doi.org/10.1126/science.aau8302

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  27. Ioannou S, Jackson J, Sheu S et al (2019) Neuron-astrocyte metabolic coupling protects against activity-induced fatty acid toxicity. Cell 177(6):1522–1535. https://doi.org/10.1016/j.cell.2019.04.001

  28. Nixon-Abell J, Obara CJ, Weigel AV et al (2016) Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in the peripheral. Science 354(6311):433–446. https://doi.org/10.1126/science.aaf3928

    CAS  CrossRef  Google Scholar 

  29. Hoffman DP, Shtengel G, Xu CS et al (2019) Correlative three-dimensional super-resolution and block face electron microscopy of whole vitreously frozen cells. Science 367 (6475):eaaz5357. https://doi.org/10.1126/science.aaz5357 10.1101/773986

    Google Scholar 

  30. Hennig P, Denk W (2007) Point-spread functions for backscattered imaging in the scanning electron microscope. J App Phys 102:123101–123108. https://doi.org/10.1063/1.2817591

    CAS  CrossRef  Google Scholar 

  31. Wu Y, Whiteus C, Xu CS et al (2017) Contacts between the endoplasmic reticulum and other membranes in neurons. PNAS 114(24):E4859–E4867. https://doi.org/10.1073/pnas.1701078114

  32. Hua Y, Laserstein P, Helmstaedter M (2015) Large-volume en-bloc staining for electron microscopy-based connectomics. Nat Commun 6:7923. https://doi.org/10.1038/ncomms8923

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank David Peale and Patrick Lee for consulting support in system modification. We also thank Zhiyuan Lu, Gleb Shtengel, David Hoffman, Amalia H. Pasolli, Kathy Schaefer, Aubrey Weigel, Nadine Randel, Michael J. Winding, and Graham Knott for EM sample preparation. We gratefully acknowledge Patrick Naulleau, Ian A. Meinertzhagen, and Steve Plaza for reviewing the manuscript and providing timely feedback. Our gratitude extends to Janelia FlyEM connectome program, in particular Gerry Rubin and Steve Plaza for their leadership. We were solely funded by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Shan Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Xu, C.S., Pang, S., Hayworth, K.J., Hess, H.F. (2020). Transforming FIB-SEM Systems for Large-Volume Connectomics and Cell Biology. In: Wacker, I., Hummel, E., Burgold, S., Schröder, R. (eds) Volume Microscopy . Neuromethods, vol 155. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0691-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0691-9_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0690-2

  • Online ISBN: 978-1-0716-0691-9

  • eBook Packages: Springer Protocols