Skip to main content

Mapping RNA–Chromatin Interactions In Vivo with RNA-DamID

  • Protocol
  • First Online:
RNA-Chromatin Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2161))

Abstract

Long-noncoding RNAs (lncRNAs) are emerging as regulators of development and disease. lncRNAs are expressed in exquisitely precise expression patterns in vivo and many interact with chromatin to regulate gene expression. However, the limited sensitivity of RNA-purification techniques has precluded the identification of genomic targets of cell-type specific lncRNAs. RNA-DamID is a powerful new approach to understand the mechanisms by which lncRNAs act in vivo. RNA-DamID is highly sensitive and accurate, and can resolve cell-type-specific chromatin binding patterns without cell isolation. The determinants of RNA-chromatin interactions can be identified with RNA-DamID by analyzing RNA and protein cofactor mutants. Here we describe how to implement RNA-DamID and the design considerations to take into account to accurately identify lncRNA-chromatin interactions in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Warner JR, Soeiro R, Birnboim HC et al (1966) Rapidly labeled HeLa cell nuclear RNA. I. Identification by zone sedimentation of a heterogeneous fraction separate from ribosomal precursor RNA. J Mol Biol 19:349–361

    Article  CAS  Google Scholar 

  2. Paul J, Duerksen JD (1975) Chromatin-associated RNA content of heterochromatin and euchromatin. Mol Cell Biochem 9:9–16

    Article  CAS  Google Scholar 

  3. Mayfield JE, Bonner J (1971) Tissue differences in rat chromosomal RNA. Proc Natl Acad Sci U S A 68:2652–2655

    Article  CAS  Google Scholar 

  4. Britten RJ, Davidson EH (1969) Gene regulation for higher cells: a theory. Science 165:349–357

    Article  CAS  Google Scholar 

  5. Davidson EH, Klein WH, Britten RJ (1977) Sequence organization in animal DNA and a speculation on hnRNA as a coordinate regulatory transcript. Dev Biol 55:69–84

    Article  CAS  Google Scholar 

  6. Mattick JS (1994) Introns: evolution and function. Curr Opin Genet Dev 4(6):823–831

    Article  CAS  Google Scholar 

  7. Brown CJ, Hendrich BD, Rupert JL et al (1992) The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 71:527–542

    Article  CAS  Google Scholar 

  8. Brockdorff N, Ashworth A, Kay GF et al (1992) The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell 71:515–526

    Article  CAS  Google Scholar 

  9. Meller VH, Wu KH, Roman G et al (1997) roX1 RNA paints the X chromosome of male drosophila and is regulated by the dosage compensation system. Cell 88:445–457

    Article  CAS  Google Scholar 

  10. Chu C, Qu K, Zhong FL et al (2011) Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol Cell 44:667–678. https://doi.org/10.1016/j.molcel.2011.08.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Simon MD, Wang CI, Kharchenko PV et al (2011) The genomic binding sites of a noncoding RNA. Proc Natl Acad Sci U S A 108:20497–20502. https://doi.org/10.1073/pnas.1113536108

    Article  PubMed  PubMed Central  Google Scholar 

  12. Engreitz JM, Pandya-Jones A, McDonel P et al (2013) The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341:1237973. https://doi.org/10.1126/science.1237973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li X, Zhou B, Chen L et al (2017) GRID-seq reveals the global RNA–chromatin interactome. Nat Biotechnol 35:940–950. https://doi.org/10.1038/nbt.3968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bell JC, Jukam D, Teran NA et al (2018) Chromatin-associated RNA sequencing (ChAR-seq) maps genome-wide RNA-to-DNA contacts. Elife 7:e27024. https://doi.org/10.7554/eLife.27024

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sridhar B, Rivas-Astroza M, Nguyen TC et al (2017) Systematic mapping of RNA-chromatin interactions in vivo. Curr Biol 27:602–609. https://doi.org/10.7554/eLife.27024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gloss BS, Dinger ME (2015) The specificity of long noncoding RNA expression. Biochim Biophys Acta 1859:16–22. https://doi.org/10.1016/j.bbagrm.2015.08.005

    Article  CAS  PubMed  Google Scholar 

  17. Bell CC, Amaral PP, Kalsbeek A et al (2016) The Evx1/Evx1as gene locus regulates anterior-posterior patterning during gastrulation. Sci Rep 6:26657. https://doi.org/10.1038/srep26657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cabili MN, Trapnell C, Goff L et al (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25:1915–1927. https://doi.org/10.1101/gad.17446611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mercer TR, Dinger ME, Sunkin SM et al (2008) Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci U S A 105:716–721. https://doi.org/10.1073/pnas.0706729105

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gloss BS, Signal B, Cheetham SW et al (2017) High resolution temporal transcriptomics of mouse embryoid body development reveals complex expression dynamics of coding and noncoding loci. Sci Rep 7:6731. https://doi.org/10.1038/s41598-017-06110-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chu C, Spitale RC, Chang HY (2015) Technologies to probe functions and mechanisms of long noncoding RNAs. Nat Struct Mol Biol 22:29–35. https://doi.org/10.1038/nsmb.2921

  22. Cheetham SW, Brand AH (2018) RNA-DamID reveals cell-type-specific binding of roX RNAs at chromatin-entry sites. Nat Struct Mol Biol 25:109–114. https://doi.org/10.1038/s41594-017-0006-4

    Article  CAS  PubMed  Google Scholar 

  23. Kind J, Pagie L, de Vries SS et al (2015) Genome-wide maps of nuclear lamina interactions in single human cells. Cell 163:134–147. https://doi.org/10.1016/j.cell.2015.08.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tosti L, Ashmore J, Tan BSN et al (2018) Mapping transcription factor occupancy using minimal numbers of cells in vitro and in vivo. Genome Res 28:592–605. https://doi.org/10.1101/gr.227124.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cheetham SW, Gruhn WH, van den Ameele J et al (2018) Targeted DamID reveals differential binding of mammalian pluripotency factors. Development 145:dev170209. https://doi.org/10.1242/dev.170209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Aughey GN, Cheetham SW, Southall TD (2019) DamID as a versatile tool for understanding gene regulation. Development 146:dev173666. https://doi.org/10.1242/dev.173666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. van den Ameele J, Krautz R, Brand AH (2019) TaDa! Analysing cell type-specific chromatin in vivo with targeted DamID. Curr Opin Neurobiol 56:160–166. https://doi.org/10.1016/j.conb.2019.01.021

    Article  CAS  PubMed  Google Scholar 

  28. Vogel MJ, Peric-Hupkes D, van Steensel B (2007) Detection of in vivo protein–DNA interactions using DamID in mammalian cells. Nat Protoc 2:1467–1478. https://doi.org/10.1038/nprot.2007.148

    Article  CAS  PubMed  Google Scholar 

  29. Aughey GN, Estacio Gomez A, Thomson J et al (2018) CATaDa reveals global remodelling of chromatin accessibility during stem cell differentiation in vivo. Elife 7:e32341. https://doi.org/10.7554/eLife.32341

    Article  PubMed  PubMed Central  Google Scholar 

  30. Marshall OJ, Brand AH (2015) Damidseq-pipeline: an automated pipeline for processing DamID sequencing datasets. Bioinformatics 31:3371–3373. https://doi.org/10.1093/bioinformatics/btv386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang Y, Liu T, Meyer CA et al (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9:R137. https://doi.org/10.1186/gb-2008-9-9-r137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

A.H.B is funded by a Royal Society Darwin Trust Research Professorship and Wellcome Trust Senior Investigator Award 103792. A.H.B acknowledges core funding to The Gurdon Institute from the Wellcome Trust (092096) and CRUK (C6946/A14492). S.W.C. acknowledges support from a National Health and Medical Research Council (NHMRC) Early Career Fellowship (GNT1161832) and Mater Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea H. Brand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cheetham, S.W., Brand, A.H. (2020). Mapping RNA–Chromatin Interactions In Vivo with RNA-DamID. In: Ørom, U. (eds) RNA-Chromatin Interactions. Methods in Molecular Biology, vol 2161. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0680-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0680-3_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0679-7

  • Online ISBN: 978-1-0716-0680-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics