Skip to main content

Analysis of RNA–DNA Triplex Structures In Vitro and In Vivo

  • Protocol
  • First Online:
RNA-Chromatin Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2161))

Abstract

RNA can bind within the major groove of purine-rich DNA via Hoogsteen base pairing and form a triple helical RNA–DNA structure that anchors the RNA to specific DNA sequences, thereby targeting RNA-associated regulatory proteins to distinct genomic sites. Here we present methods to analyze the potential of a given RNA to form triplexes in vitro and to validate these structures in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Felsenfeld G, Davies DR, Rich A (1957) Formation of a three-stranded polynucleotide molecule. J Am Chem Soc 79:2023–2024

    Article  CAS  Google Scholar 

  2. Goñi JR, de la Cruz X, Orozco M (2004) Triplex-forming oligonucleotide target sequences in the human genome. Nucleic Acids Res 32:354–360

    Article  Google Scholar 

  3. Buske FA, Bauer DC, Mattick JS, Bailey TL (2012) Triplexator: detecting nucleic acid triple helices in genomic and transcriptomic data. Genome Res 22:1372–1381

    Article  CAS  Google Scholar 

  4. Schmitz KM, Mayer C, Postepska A, Grummt I (2010) Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes Dev 24:2264–2269

    Article  CAS  Google Scholar 

  5. Zhao Z, Sentürk N, Chen C, Grummt I (2018) LncRNA PAPAS tethered to the rDNA enhancer recruits hypophosphorylated CHD4/NuRD4 to repress rRNA synthesis at elevated temperature. Genes Dev 32:836–848

    Article  CAS  Google Scholar 

  6. Grote P, Wittler L, Hendrix D, Koch F, Währisch S, Beisaw A et al (2013) The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell 24:206–214

    Article  CAS  Google Scholar 

  7. Mondal T, Subhash S, Vaid R, Enroth S, Uday S, Reinius B et al (2015) MEG3 long noncoding RNA regulates the TGF-β pathway genes through formation of RNA-DNA triplex structures. Nat Commun 6:7743

    Article  CAS  Google Scholar 

  8. Postepska-Igielska A, Giwojna A, Gasri-Plotnitsky L, Schmitt N, Dold A, Ginsberg D et al (2015) LncRNA Khps1 regulates expression of the proto-oncogene SPHK1 via triplex-mediated changes in chromatin structure. Mol Cell 60:626–636

    Article  CAS  Google Scholar 

  9. Blank-Giwojna A, Postepska-Igielska A, Grummt I (2019) LncRNA KHPS1 activates a poised enhancer by triplex-dependent recruitment of epigenetic regulators. Cell Rep 26:2904–2915

    Article  CAS  Google Scholar 

  10. O’Leary VB, Ovsepian SV, Carrascosa LG, Buske FA, Radulovic V, Niyazi M et al (2015) PARTICLE, a triplex-forming long ncRNA, regulates locus-specific methylation in response to low-dose irradiation. Cell Rep 11:474–485

    Article  Google Scholar 

  11. Kalwa M, Hänzelmann S, Otto S, Kuo CC, Franzen J, Joussen S et al (2016) The lncRNA HOTAIR impacts on mesenchymal stem cells via triple helix formation. Nucleic Acids Res 44:10631–10643

    Article  CAS  Google Scholar 

  12. Paugh SW, Coss DR, Bao J, Laudermilk LT, Grace CR, Ferreira AM et al (2016) MicroRNAs form triplexes with double stranded DNA at sequence-specific binding sites; a eukaryotic mechanism via which microRNAs could directly alter gene expression. PLoS Comput Biol 12(2):e1004744

    Article  Google Scholar 

  13. Li Y, Syed J, Sugiyama H (2016) RNA-DNA triplex formation by long noncoding RNAs. Cell Chem Biol 23:1325–1333

    Article  CAS  Google Scholar 

  14. Sentürk Cetin N, Kuo C-C, Ribarska T, Li R, Costa IG, Grummt I (2019) Isolation and genome-wide characterization of cellular DNA:RNA triplex structures. Nucleic Acids Res 47:2306–2321

    Article  Google Scholar 

  15. Maldonado R, Schwartz U, Silberhorn E, Langst G (2019) Nucleosomes stabilize ssRNA-dsDNA triple helices in human cells. Mol Cell 73:1243–1254

    Article  CAS  Google Scholar 

  16. Brown WT, Nolin S, Houck G Jr, Ding X, Glicksman A, Li SY, Stark-Houck S, Brophy P, Duncan C, Dobkin C, Jenkins E (1996) Prenatal diagnosis and carrier screening for fragile X by PCR. Am J Med Genet 64:191–195

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work in the Grummt lab has been funded by the DFG (GR475/22-2; SFB1036), CellNetworks (EcTop Survey 2014), the Baden-Württemberg Stiftung, and the Deutsches Krebsforschungszentrum (DKFZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Grummt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Postepska-Igielska, A., Blank-Giwojna, A., Grummt, I. (2020). Analysis of RNA–DNA Triplex Structures In Vitro and In Vivo. In: Ørom, U. (eds) RNA-Chromatin Interactions. Methods in Molecular Biology, vol 2161. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0680-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0680-3_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0679-7

  • Online ISBN: 978-1-0716-0680-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics