Crystallographic Studies of the Cerebral Cavernous Malformations Proteins

Part of the Methods in Molecular Biology book series (MIMB, volume 2152)


Cerebral cavernous malformations (CCM) are dysplasias that primarily occur in the neurovasculature, and are associated with mutations in three genes: KRIT1, CCM2, and PDCD10, the protein products of which are KRIT1 (Krev/Rap1 Interaction Trapped 1; CCM1, cerebral cavernous malformations 1), CCM2 (cerebral cavernous malformations 2; OSM, osmosensing scaffold for MEKK3), and CCM3 (cerebral cavernous malformations 3; PDCD10, programmed cell death 10). Until recently, these proteins were relatively understudied at the molecular level, and only three folded domains were documented. These were a band 4.1, ezrin, radixin, moesin (FERM), and an ankyrin repeat domain (ARD) in KRIT1, and a phosphotyrosine-binding (PTB) domain in CCM2. Over the past 10 years, a crystallographic approach has been used to discover a series of previously unidentified domains within the CCM proteins. These include a non-functional Nudix (or pseudonudix) domain in KRIT1, a harmonin homology domain (HHD) in CCM2, and dimerization and focal adhesion targeting (FAT)-homology domains within CCM3. Many of the roles of these domains have been revealed by structure-guided studies that show the CCM proteins can directly interact with one another to form a signaling scaffold, and that the “CCM complex” functions in signal transduction by interacting with other binding partners, including ICAP1, RAP1, and MEKK3. In this chapter, we describe the crystallization of CCM protein domains alone, and with their interaction partners.

Key words

CCM proteins X-ray crystallography Protein purification KRIT1 CCM2 CCM3 ICAP1 RAP1 MEKK3 



We wish to thank Amy Stiegler Wyler, Byunghak Ha, and David Calderwood for helpful discussions. This work is funded by National Institutes of Health grants R01GM114621 and R01NS085078 to TJB.


  1. 1.
    Cavalcanti DD, Kalani MY, Martirosyan NL, Eales J, Spetzler RF, Preul MC (2012) Cerebral cavernous malformations: from genes to proteins to disease. J Neurosurg 116(1):122–132CrossRefPubMedGoogle Scholar
  2. 2.
    Fisher OS, Boggon TJ (2014) Signaling pathways and the cerebral cavernous malformations proteins: lessons from structural biology. Cell Mol Life Sci 71(10):1881–1892. Scholar
  3. 3.
    Draheim KM, Fisher OS, Boggon TJ, Calderwood DA (2014) Cerebral cavernous malformation proteins at a glance. J Cell Sci 127(Pt 4):701–707. Scholar
  4. 4.
    Li X, Fisher OS, Boggon TJ (2015) The cerebral cavernous malformations proteins. Oncotarget 6(32):32279–32280. Scholar
  5. 5.
    Fisher OS, Deng H, Liu D, Zhang Y, Wei R, Deng Y, Zhang F, Louvi A, Turk BE, Boggon TJ, Su B (2015) Structure and vascular function of MEKK3-cerebral cavernous malformations 2 complex. Nat Commun 6(7938):7937. Scholar
  6. 6.
    Draheim KM, Li X, Zhang R, Fisher OS, Villari G, Boggon TJ, Calderwood DA (2015) CCM2-CCM3 interaction stabilizes their protein expression and permits endothelial network formation. J Cell Biol 208(7):987–1001. Scholar
  7. 7.
    Fisher OS, Liu W, Zhang R, Stiegler AL, Ghedia S, Weber JL, Boggon TJ (2015) Structural basis for the disruption of the cerebral cavernous malformations 2 (CCM2) interaction with Krev interaction trapped 1 (KRIT1) by disease-associated mutations. J Biol Chem 290(5):2842–2853. Scholar
  8. 8.
    Stiegler AL, Zhang R, Liu W, Boggon TJ (2014) Structural determinants for binding of sorting Nexin 17 (SNX17) to the cytoplasmic adaptor protein Krev Interaction Trapped 1 (KRIT1). J Biol Chem 289(36):25362–25373. Scholar
  9. 9.
    Liu W, Boggon TJ (2013) Cocrystal structure of the ICAP1 PTB domain in complex with a KRIT1 peptide. Acta Crystallogr Sect F 69(Pt 5):494–498CrossRefGoogle Scholar
  10. 10.
    Liu W, Draheim KM, Zhang R, Calderwood DA, Boggon TJ (2013) Mechanism for KRIT1 release of ICAP1-mediated suppression of integrin activation. Mol Cell 49(4):719–729. Scholar
  11. 11.
    Li X, Zhang R, Draheim KM, Liu W, Calderwood DA, Boggon TJ (2012) Structural basis for small G protein effector interaction of Ras-related Protein 1 (Rap1) and adaptor protein Krev Interaction Trapped 1 (KRIT1). J Biol Chem 287(26):22317–22327CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Li X, Ji W, Zhang R, Folta-Stogniew E, Min W, Boggon TJ (2011) Molecular recognition of LD motifs by the FAT-homology domain of cerebral cavernous malformation 3 (CCM3). J Biol Chem 286(29):26138–26147CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Li X, Zhang R, Zhang H, He Y, Ji W, Min W, Boggon TJ (2010) Crystal structure of CCM3, a cerebral cavernous malformation protein critical for vascular integrity. J Biol Chem 285(31):24099–24107CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Fisher OS, Zhang R, Li X, Murphy JW, Demeler B, Boggon TJ (2013) Structural studies of cerebral cavernous malformations 2 (CCM2) reveal a folded helical domain at its C-terminus. FEBS Lett 587(3):272–277. Scholar
  15. 15.
    Gingras AR, Puzon-McLaughlin W, Ginsberg MH (2013) The structure of the ternary complex of Krev Interaction Trapped 1 (KRIT1) bound to both the Rap1 GTPase and the Heart of Glass (HEG1) cytoplasmic tail. J Biol Chem 288(33):23639–23649. Scholar
  16. 16.
    Gingras AR, Liu JJ, Ginsberg MH (2012) Structural basis of the junctional anchorage of the cerebral cavernous malformations complex. J Cell Biol 199(1):39–48. Scholar
  17. 17.
    Xu X, Wang X, Zhang Y, Wang DC, Ding J (2013) Structural basis for the unique heterodimeric assembly between cerebral cavernous malformation 3 and germinal center kinase III. Structure 21(6):1059–1066. Scholar
  18. 18.
    Wang X, Ding J, Wang D (2012) Crystallization and preliminary X-ray analysis of the C-terminal domain of CCM2, part of a novel adaptor protein involved in cerebral cavernous malformations. Acta Crystallogr Sect F Struct Biol Cryst Commun 68(Pt 6):683–686. Scholar
  19. 19.
    Ding J, Wang X, Li DF, Hu Y, Zhang Y, Wang DC (2010) Crystal structure of human programmed cell death 10 complexed with inositol-(1,3,4,5)-tetrakisphosphate: a novel adaptor protein involved in human cerebral cavernous malformation. Biochem Biophys Res Commun 399(4):587–592CrossRefPubMedGoogle Scholar
  20. 20.
    Zhang R, Li X, Boggon TJ (2015) Structural analysis of the KRIT1 ankyrin repeat and FERM domains reveals a conformationally stable ARD-FERM interface. J Struct Biol 192(3):449–456. Scholar
  21. 21.
    Shi Z, Jiao S, Zhang Z, Ma M, Zhang Z, Chen C, Wang K, Wang H, Wang W, Zhang L, Zhao Y, Zhou Z (2013) Structure of the MST4 in complex with MO25 provides insights into its activation mechanism. Structure 21(3):449–461. Scholar
  22. 22.
    Wang X, Hou Y, Deng K, Zhang Y, Wang DC, Ding J (2015) Structural insights into the molecular recognition between cerebral cavernous malformation 2 and mitogen-activated protein kinase kinase kinase 3. Structure 23(6):1087–1096. Scholar
  23. 23.
    Serebriiskii I, Estojak J, Sonoda G, Testa JR, Golemis EA (1997) Association of Krev-1/rap1a with Krit1, a novel ankyrin repeat-containing protein encoded by a gene mapping to 7q21-22. Oncogene 15(9):1043–1049CrossRefPubMedGoogle Scholar
  24. 24.
    Liquori CL, Berg MJ, Siegel AM, Huang E, Zawistowski JS, Stoffer T, Verlaan D, Balogun F, Hughes L, Leedom TP, Plummer NW, Cannella M, Maglione V, Squitieri F, Johnson EW, Rouleau GA, Ptacek L, Marchuk DA (2003) Mutations in a gene encoding a novel protein containing a phosphotyrosine-binding domain cause type 2 cerebral cavernous malformations. Am J Hum Genet 73(6):1459–1464CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Denier C, Goutagny S, Labauge P, Krivosic V, Arnoult M, Cousin A, Benabid AL, Comoy J, Frerebeau P, Gilbert B, Houtteville JP, Jan M, Lapierre F, Loiseau H, Menei P, Mercier P, Moreau JJ, Nivelon-Chevallier A, Parker F, Redondo AM, Scarabin JM, Tremoulet M, Zerah M, Maciazek J, Tournier-Lasserve E (2004) Mutations within the MGC4607 gene cause cerebral cavernous malformations. Am J Hum Genet 74(2):326–337CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Uhlik MT, Abell AN, Johnson NL, Sun W, Cuevas BD, Lobel-Rice KE, Horne EA, Dell’Acqua ML, Johnson GL (2003) Rac-MEKK3-MKK3 scaffolding for p38 MAPK activation during hyperosmotic shock. Nat Cell Biol 5(12):1104–1110CrossRefPubMedGoogle Scholar
  27. 27.
    Bergametti F, Denier C, Labauge P, Arnoult M, Boetto S, Clanet M, Coubes P, Echenne B, Ibrahim R, Irthum B, Jacquet G, Lonjon M, Moreau JJ, Neau JP, Parker F, Tremoulet M, Tournier-Lasserve E (2005) Mutations within the programmed cell death 10 gene cause cerebral cavernous malformations. Am J Hum Genet 76(1):42–51CrossRefPubMedGoogle Scholar
  28. 28.
    Zhang M, Dong L, Shi Z, Jiao S, Zhang Z, Zhang W, Liu G, Chen C, Feng M, Hao Q, Wang W, Yin M, Zhao Y, Zhang L, Zhou Z (2013) Structural mechanism of CCM3 heterodimerization with GCKIII kinases. Structure 21(4):680–688. Scholar
  29. 29.
    McPherson A, Gavira JA (2014) Introduction to protein crystallization. Acta Crystallogr Sect F Struct Biol Commun 70(Pt 1):2–20. Scholar
  30. 30.
    Bergfors T (2003) Seeds to crystals. J Struct Biol 142(1):66–76CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of PharmacologyYale Cancer Center, Yale University School of MedicineNew HavenUSA
  2. 2.Department of ChemistryLehigh UniversityBethlehemUSA
  3. 3.Abcam Inc.BranfordUSA
  4. 4.MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of ChinaQingdaoChina
  5. 5.Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  6. 6.Department of Molecular Biophysics and BiochemistryYale Cancer Center, Yale University School of MedicineNew HavenUSA

Personalised recommendations