Skip to main content

Sphingolipids: Functional and Biological Aspects in Mammals, Plants, and Fungi

  • Protocol
  • First Online:
Analysis of Membrane Lipids

Abstract

Sphingolipids are an important class of lipids found in a variety of organisms, including mammals, plants, and fungi. It is structurally diverse among them, presenting variations in the headgroups as well as in the sites of unsaturation and length of the fatty acid chain. Although structurally different, some molecules are found in mammalian, fungal, and plant cells, such as glycosylceramides. On the other hand, there are sphingolipids only found in certain organisms, such as gangliosides and sphingomyelin in mammals, 9-methyl-4,8-sphingadienine in fungi, and specific inositolphosphorylceramides in plants. A variety of methodologies are available in the literature in order to extract, purify, and identify sphingolipid structures, all of them based on the use of organic solvents, chromatographic, and spectrometric techniques. The study of sphingolipids shows to be necessary when considering the roles for biological events, such as membrane integrity and cell morphology, as well as cellular signaling, nutrient uptake, and regulation of growth. For these reasons, this chapter aims to discuss the most important aspects of sphingolipids that have been studying during the last few decades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Marques JT, Marinho HS, De Almeida RFM (2018) Sphingolipid hydroxylation in mammals, yeast and plants – an integrated view. Prog Lipid Res 71:18–42

    CAS  PubMed  Google Scholar 

  2. Gault CR, Obeid LM, Hannun YA (2010) An overview of sphingolipid metabolism: from synthesis to breakdown. Adv Exp Med Biol 688:1–23

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Sperling P, Heinz E (2003) Plant sphingolipids: structural diversity, biosynthesis, first genes and functions. Biochim Biophys Acta 1632(1–3):1–15

    CAS  PubMed  Google Scholar 

  4. Rollin-Pinheiro R, Singh A, Barreto-Bergter E, Del Poeta M (2016) Sphingolipids as targets for treatment of fungal infections. Future Med Chem 8(12):1469–1484

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Michaelson LV, Napier JA, Molino D, Faure JD (2016) Plant sphingolipids: their importance in cellular organization and adaption. Biochim Biophys Acta 1861(9 Pt B):1329–1335

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Slotte JP (2013) Biological functions of sphingomyelins. Prog Lipid Res 52(4):424–437

    CAS  PubMed  Google Scholar 

  7. Heung LJ, Luberto C, Del Poeta M (2006) Role of sphingolipids in microbial pathogenesis. Infect Immun 74(1):28–39

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Barreto-Bergter E, Pinto MR, Rodrigues ML (2004) Structure and biological functions of fungal cerebrosides. An Acad Bras Cienc 76(1):67–84

    CAS  PubMed  Google Scholar 

  9. Barreto-Bergter E, Sassaki GL, De Souza LM (2011) Structural analysis of fungal cerebrosides. Front Microbiol 2:239

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Smith SW, Lester RL (1974) Inositol phosphorylceramide, a novel substance and the chief member of a major group of yeast sphingolipids containing a single inositol phosphate. J Biol Chem 249(11):3395–3405

    CAS  PubMed  Google Scholar 

  11. Leber A, Fischer P, Schneiter R, Kohlwein SD, Daum G (1997) The yeast mic2 mutant is defective in the formation of mannosyl-diinositolphosphorylceramide. FEBS Lett 411(2–3):211–214

    CAS  PubMed  Google Scholar 

  12. Yu RK, Tsai YT, Ariga T, Yanagisawa M (2011) Structures, biosynthesis, and functions of gangliosides--an overview. J Oleo Sci 60(10):537–544

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Yu RK, Nakatani Y, Yanagisawa M (2009) The role of glycosphingolipid metabolism in the developing brain. J Lipid Res 50:S440–S445

    PubMed  PubMed Central  Google Scholar 

  14. Airola MV, Hannun YA (2013) Sphingolipid metabolism and neutral sphingomyelinases. Handb Exp Pharmacol 215:57–76. https://doi.org/10.1007/978-3-7091-1368-4_3

    Article  CAS  Google Scholar 

  15. O’brien JS, Sampson EL (1965) Lipid composition of the normal human brain: gray matter, white matter, and myelin. J Lipid Res 6(4):537–544

    PubMed  Google Scholar 

  16. Ohanian J, Ohanian V (2001) Sphingolipids in mammalian cell signalling. Cell Mol Life Sci 58(14):2053–2068

    CAS  PubMed  Google Scholar 

  17. Mandala SM, Thornton RA, Frommer BR, Curotto JE, Rozdilsky W, Kurtz MB, Giacobbe RA, Bills GF, Cabello MA, Martín I, Pelaez F, Harris GH (1995) The discovery of australifungin, a novel inhibitor of sphinganine N-acyltransferase from Sporormiella australis. Producing organism, fermentation, isolation, and biological activity. J Antibiot (Tokyo) 48(5):349–356

    CAS  Google Scholar 

  18. Toledo MS, Levery SB, Suzuki E, Straus AH, Takahashi HK (2001) Characterization of cerebrosides from the thermally dimorphic mycopathogen Histoplasma capsulatum: expression of 2-hydroxy fatty N-acyl (E)-Delta(3)-unsaturation correlates with the yeast-mycelium phase transition. Glycobiology 11(2):113–124

    CAS  PubMed  Google Scholar 

  19. Takakuwa N, Kinoshita M, Oda Y, Ohnishi M (2002) Existence of cerebroside in Saccharomyces kluyveri and its related species. FEMS Yeast Res 2(4):533–538

    CAS  PubMed  Google Scholar 

  20. Takahashi HK, Levery SB, Toledo MS, Suzuki E, Salyan ME, Hakomori S, Straus AH (1996) Isolation and possible composition of glucosylceramides from Paracoccidioides brasiliensis. Braz J Med Biol Res 29(11):1441–1444

    CAS  PubMed  Google Scholar 

  21. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917

    CAS  PubMed  Google Scholar 

  22. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226(1):497–509

    CAS  PubMed  Google Scholar 

  23. Sullards MC, Liu Y, Chen Y, Merrill AH Jr (2011) Analysis of mammalian sphingolipids by liquid chromatography tandem mass spectrometry (LC-MS/MS) and tissue imaging mass spectrometry (TIMS). Biochim Biophys Acta 1811(11):838–853

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Han X, Gross RW (1994) Electrospray ionization mass spectroscopic analysis of human erythrocyte plasma membrane phospholipids. Proc Natl Acad Sci U S A 91(22):10635–10639

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Jones EE, Dworski S, Canals D, Casas J, Fabrias G, Schoenling D, Levade T, Denlinger C, Hannun YA, Medin JA, Drake RR (2014) On-tissue localization of ceramides and other sphingolipids by MALDI mass spectrometry imaging. Anal Chem 86(16):8303–8311

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ahn YM, Lee WW, Jung JH, Lee SG, Hong J (2009) Structural determination of glucosylceramides isolated from marine sponge by fast atom bombardment collision-induced dissociation linked scan at constant B/E. J Mass Spectrom 44(12):1698–1708

    CAS  PubMed  Google Scholar 

  27. Shaner RL, Allegood JC, Park H, Wang E, Kelly S, Haynes CA, Sullards MC, Merrill AH Jr (2009) Quantitative analysis of sphingolipids for lipidomics using triple quadrupole and quadrupole linear ion trap mass spectrometers. J Lipid Res 50(8):1692–1707

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Jia Z, Li S, Cong P, Wang Y, Sugawara T, Xue C, Xu J (2015) High throughput analysis of cerebrosides from the sea cucumber Pearsonothria graeffei by liquid chromatography-quadrupole-time-of-flight mass spectrometry. J Oleo Sci 64(1):51–60

    CAS  PubMed  Google Scholar 

  29. Brugger B (2014) Lipidomics: analysis of the lipid composition of cells and subcellular organelles by electrospray ionization mass spectrometry. Annu Rev Biochem 83:79–98

    PubMed  Google Scholar 

  30. Singh A, Del Poeta M (2016) Sphingolipidomics: an important mechanistic tool for studying fungal pathogens. Front Microbiol 7:501

    PubMed  PubMed Central  Google Scholar 

  31. Guan XL, Wenk MR (2006) Mass spectrometry-based profiling of phospholipids and sphingolipids in extracts from Saccharomyces cerevisiae. Yeast 23(6):465–477

    CAS  PubMed  Google Scholar 

  32. Koval M, Pagano RE (1991) Intracellular transport and metabolism of sphingomyelin. Biochim Biophys Acta 1082(2):113–125

    CAS  PubMed  Google Scholar 

  33. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387(6633):569–572

    CAS  PubMed  Google Scholar 

  34. Janes PW, Ley SC, Magee AI, Kabouridis PS (2000) The role of lipid rafts in T cell antigen receptor (TCR) signalling. Semin Immunol 12(1):23–34

    CAS  PubMed  Google Scholar 

  35. Anderson RG (1998) The caveolae membrane system. Annu Rev Biochem 67:199–225

    CAS  PubMed  Google Scholar 

  36. Okamoto T, Schlegel A, Scherer PE, Lisanti MP (1998) Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J Biol Chem 273(10):5419–5422

    CAS  PubMed  Google Scholar 

  37. Brown DA, London E (1998) Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14:111–136

    CAS  PubMed  Google Scholar 

  38. Igarashi J, Michel T (2000) Agonist-modulated targeting of the EDG-1 receptor to plasmalemmal caveolae. eNOS activation by sphingosine 1-phosphate and the role of caveolin-1 in sphingolipid signal transduction. J Biol Chem 275(41):32363–32370

    CAS  PubMed  Google Scholar 

  39. Natoli G, Costanzo A, Guido F, Moretti F, Levrero M (1998) Apoptotic, non-apoptotic, and anti-apoptotic pathways of tumor necrosis factor signalling. Biochem Pharmacol 56(8):915–920

    CAS  PubMed  Google Scholar 

  40. Rosenman SJ, Ganji AA, Tedder TF, Gallatin WM (1993) Syn-capping of human T lymphocyte adhesion/activation molecules and their redistribution during interaction with endothelial cells. J Leukoc Biol 53(1):1–10

    CAS  PubMed  Google Scholar 

  41. Bourguignon LY, Jy W, Majercik MH, Bourguignon GJ (1988) Lymphocyte activation and capping of hormone receptors. J Cell Biochem 37(2):131–150

    CAS  PubMed  Google Scholar 

  42. Razani B, Wang XB, Engelman JA, Battista M, Lagaud G, Zhang XL, Kneitz B, Hou H Jr, Christ GJ, Edelmann W, Lisanti MP (2002) Caveolin-2-deficient mice show evidence of severe pulmonary dysfunction without disruption of caveolae. Mol Cell Biol 22(7):2329–2344

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ortegren U, Karlsson M, Blazic N, Blomqvist M, Nystrom FH, Gustavsson J, Fredman P, Strålfors P (2004) Lipids and glycosphingolipids in caveolae and surrounding plasma membrane of primary rat adipocytes. Eur J Biochem 271(10):2028–2036

    PubMed  Google Scholar 

  44. Ortegren U, Aboulaich N, Ost A, Stralfors P (2007) A new role for caveolae as metabolic platforms. Trends Endocrinol Metab 18(9):344–349

    PubMed  Google Scholar 

  45. Gomme PT, Mccann KB, Bertolini J (2005) Transferrin: structure, function and potential therapeutic actions. Drug Discov Today 10(4):267–273

    CAS  PubMed  Google Scholar 

  46. Gatter KC, Brown G, Trowbridge IS, Woolston RE, Mason DY (1983) Transferrin receptors in human tissues: their distribution and possible clinical relevance. J Clin Pathol 36(5):539–545

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Shakor AB, Taniguchi M, Kitatani K, Hashimoto M, Asano S, Hayashi A, Nomura K, Bielawski J, Bielawska A, Watanabe K, Kobayashi T, Igarashi Y, Umehara H, Takeya H, Okazaki T (2011) Sphingomyelin synthase 1-generated sphingomyelin plays an important role in transferrin trafficking and cell proliferation. J Biol Chem 286(41):36053–36062

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Milescu M, Bosmans F, Lee S, Alabi AA, Kim JI, Swartz KJ (2009) Interactions between lipids and voltage sensor paddles detected with tarantula toxins. Nat Struct Mol Biol 16(10):1080–1085

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ledeen RW, Wu G (2008) Nuclear sphingolipids: metabolism and signaling. J Lipid Res 49(6):1176–1186

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Yoshikawa M, Go S, Takasaki K, Kakazu Y, Ohashi M, Nagafuku M, Kabayama K, Sekimoto J, Suzuki S, Takaiwa K, Kimitsuki T, Matsumoto N, Komune S, Kamei D, Saito M, Fujiwara M, Iwasaki K, Inokuchi J (2009) Mice lacking ganglioside GM3 synthase exhibit complete hearing loss due to selective degeneration of the organ of Corti. Proc Natl Acad Sci USA 106(23):9483–9488

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Niimi K, Nishioka C, Miyamoto T, Takahashi E, Miyoshi I, Itakura C, Yamashita T (2011) Impairment of neuropsychological behaviors in ganglioside GM3-knockout mice. Biochem Biophys Res Commun 406(4):524–528

    CAS  PubMed  Google Scholar 

  52. Okada M, Itoh Mi M, Haraguchi M, Okajima T, Inoue M, Oishi H, Matsuda Y, Iwamoto T, Kawano T, Fukumoto S, Miyazaki H, Furukawa K, Aizawa S, Furukawa K (2002) B-series ganglioside deficiency exhibits no definite changes in the neurogenesis and the sensitivity to Fas-mediated apoptosis but impairs regeneration of the lesioned hypoglossal nerve. J Biol Chem 277(3):1633–1636

    CAS  PubMed  Google Scholar 

  53. Takamiya K, Yamamoto A, Furukawa K, Yamashiro S, Shin M, Okada M, Fukumoto S, Haraguchi M, Takeda N, Fujimura K, Sakae M, Kishikawa M, Shiku H, Furukawa K, Aizawa S (1996) Mice with disrupted GM2/GD2 synthase gene lack complex gangliosides but exhibit only subtle defects in their nervous system. Proc Natl Acad Sci U S A 93(20):10662–10667

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Tajima O, Egashira N, Ohmi Y, Fukue Y, Mishima K, Iwasaki K, Fujiwara M, Inokuchi J, Sugiura Y, Furukawa K, Furukawa K (2009) Reduced motor and sensory functions and emotional response in GM3-only mice: emergence from early stage of life and exacerbation with aging. Behav Brain Res 198(1):74–82

    PubMed  Google Scholar 

  55. Tajima O, Egashira N, Ohmi Y, Fukue Y, Mishima K, Iwasaki K, Fujiwara M, Sugiura Y, Furukawa K, Furukawa K (2010) Dysfunction of muscarinic acetylcholine receptors as a substantial basis for progressive neurological deterioration in GM3-only mice. Behav Brain Res 206(1):101–108

    CAS  PubMed  Google Scholar 

  56. Yamashita T, Wu YP, Sandhoff R, Werth N, Mizukami H, Ellis JM, Dupree JL, Geyer R, Sandhoff K, Proia RL (2005) Interruption of ganglioside synthesis produces central nervous system degeneration and altered axon-glial interactions. Proc Natl Acad Sci U S A 102(8):2725–2730

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kaida K, Ariga T, Yu RK (2009) Antiganglioside antibodies and their pathophysiological effects on Guillain-Barre syndrome and related disorders--a review. Glycobiology 19(7):676–692

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Bernardo A, Harrison FE, McCord M, Zhao J, Bruchey A, Davies SS, Jackson Roberts L 2nd, Mathews PM, Matsuoka Y, Ariga T, Yu RK, Thompson R, McDonald MP (2009) Elimination of GD3 synthase improves memory and reduces amyloid-beta plaque load in transgenic mice. Neurobiol Aging 30(11):1777–1791

    CAS  PubMed  Google Scholar 

  59. Matsuzaki K, Kato K, Yanagisawa K (2010) Abeta polymerization through interaction with membrane gangliosides. Biochim Biophys Acta 1801(8):868–877

    CAS  PubMed  Google Scholar 

  60. Yanagisawa M, Yoshimura S, Yu RK (2011) Expression of GD2 and GD3 gangliosides in human embryonic neural stem cells. ASN Neuro 3(2):e00054. https://doi.org/10.1042/AN20110006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yu RK, Suzuki Y, Yanagisawa M (2010) Membrane glycolipids in stem cells. FEBS Lett 584(9):1694–1699

    CAS  PubMed  Google Scholar 

  62. Ogden AT, Waziri AE, Lochhead RA, Fusco D, Lopez K, Ellis JA, Kang J, Assanah M, McKhann GM, Sisti MB, McCormick PC, Canoll P, Bruce JN (2008) Identification of A2B5+CD133- tumor-initiating cells in adult human gliomas. Neurosurgery 62(2):505–514. discussion 514–505

    PubMed  Google Scholar 

  63. Tchoghandjian A, Baeza N, Colin C, Cayre M, Metellus P, Beclin C, Ouafik L, Figarella-Branger D (2010) A2B5 cells from human glioblastoma have cancer stem cell properties. Brain Pathol 20(1):211–221

    PubMed  Google Scholar 

  64. Sperling P, Franke S, Luthje S, Heinz E (2005) Are glucocerebrosides the predominant sphingolipids in plant plasma membranes? Plant Physiol Biochem 43(12):1031–1038

    CAS  PubMed  Google Scholar 

  65. Markham JE, Li J, Cahoon EB, Jaworski JG (2006) Separation and identification of major plant sphingolipid classes from leaves. J Biol Chem 281(32):22684–22694

    CAS  PubMed  Google Scholar 

  66. Mamode Cassim A, Gouguet P, Gronnier J, Laurent N, Germain V, Grison M, Boutté Y, Gerbeau-Pissot P, Simon-Plas F, Mongrand S (2019) Plant lipids: key players of plasma membrane organization and function. Prog Lipid Res 73:1–27

    CAS  PubMed  Google Scholar 

  67. Bayer EM, Mongrand S, Tilsner J (2014) Specialized membrane domains of plasmodesmata, plant intercellular nanopores. Front Plant Sci 5:507

    PubMed  PubMed Central  Google Scholar 

  68. Uemura M, Joseph RA, Steponkus PL (1995) Cold acclimation of Arabidopsis thaliana (Effect on plasma membrane lipid composition and freeze-induced lesions). Plant Physiol 109(1):15–30

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Ischebeck T, Valledor L, Lyon D, Gingl S, Nagler M, Meijón M, Egelhofer V, Weckwerth W (2014) Comprehensive cell-specific protein analysis in early and late pollen development from diploid microsporocytes to pollen tube growth. Mol Cell Proteomics 13(1):295–310

    CAS  PubMed  Google Scholar 

  70. Mina JG, Okada Y, Wansadhipathi-Kannangara NK, Pratt S, Shams-Eldin H, Schwarz RT, Steel PG, Fawcett T, Denny PW (2010) Functional analyses of differentially expressed isoforms of the Arabidopsis inositol phosphorylceramide synthase. Plant Mol Biol 73(4–5):399–407

    CAS  PubMed  Google Scholar 

  71. Rennie EA, Ebert B, Miles GP, Cahoon RE, Christiansen KM, Stonebloom S, Khatab H, Twell D, Petzold CJ, Adams PD, Dupree P, Heazlewood JL, Cahoon EB, Scheller HV (2014) Identification of a sphingolipid alpha-glucuronosyltransferase that is essential for pollen function in Arabidopsis. Plant Cell 26(8):3314–3325

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Msanne J, Chen M, Luttgeharm KD, Bradley AM, Mays ES, Paper JM, Boyle DL, Cahoon RE, Schrick K, Cahoon EB (2015) Glucosylceramides are critical for cell-type differentiation and organogenesis, but not for cell viability in Arabidopsis. Plant J 84(1):188–201

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang W, Yang X, Tangchaiburana S, Ndeh R, Markham JE, Tsegaye Y, Dunn TM, Wang GL, Bellizzi M, Parsons JF, Morrissey D, Bravo JE, Lynch DV, Xiao S (2008) An inositolphosphorylceramide synthase is involved in regulation of plant programmed cell death associated with defense in Arabidopsis. Plant Cell 20(11):3163–3179

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Van Meer G, Lisman Q (2002) Sphingolipid transport: rafts and translocators. J Biol Chem 277(29):25855–25858

    PubMed  Google Scholar 

  75. Peskan T, Westermann M, Oelmuller R (2000) Identification of low-density triton X-100-insoluble plasma membrane microdomains in higher plants. Eur J Biochem 267(24):6989–6995

    CAS  PubMed  Google Scholar 

  76. Kierszniowska S, Seiwert B, Schulze WX (2009) Definition of Arabidopsis sterol-rich membrane microdomains by differential treatment with methyl-beta-cyclodextrin and quantitative proteomics. Mol Cell Proteomics 8(4):612–623

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Berkey R, Bendigeri D, Xiao S (2012) Sphingolipids and plant defense/disease: the “death” connection and beyond. Front Plant Sci 3:68

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Begum MA, Shi XX, Tan Y, Zhou WW, Hannun Y, Obeid L, Mao C, Zhu ZR (2016) Molecular characterization of Rice OsLCB2a1 gene and functional analysis of its role in insect resistance. Front Plant Sci 7:1789

    PubMed  PubMed Central  Google Scholar 

  79. Ali U, Li H, Wang X, Guo L (2018) Emerging roles of sphingolipid signaling in plant response to biotic and abiotic stresses. Mol Plant 11(11):1328–1343

    CAS  PubMed  Google Scholar 

  80. Nimrichter L, Rodrigues ML (2011) Fungal glucosylceramides: from structural components to biologically active targets of new antimicrobials. Front Microbiol 2:212

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Rhome R, Del Poeta M (2010) Sphingolipid signaling in fungal pathogens. Adv Exp Med Biol 688:232–237

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Insenser M, Nombela C, Molero G, Gil C (2006) Proteomic analysis of detergent-resistant membranes from Candida albicans. Proteomics 6(Suppl 1):S74–S81

    PubMed  Google Scholar 

  83. Sonnino S, Mauri L, Chigorno V, Prinetti A (2007) Gangliosides as components of lipid membrane domains. Glycobiology 17(1):1R–13R

    CAS  PubMed  Google Scholar 

  84. Rodrigues ML, Nimrichter L, Oliveira DL, Frases S, Miranda K, Zaragoza O, Alvarez M, Nakouzi A, Feldmesser M, Casadevall A (2007) Vesicular polysaccharide export in Cryptococcus neoformans is a eukaryotic solution to the problem of fungal trans-cell wall transport. Eukaryot Cell 6(1):48–59

    CAS  PubMed  Google Scholar 

  85. Rittershaus PC, Kechichian TB, Allegood JC, Merrill AH Jr, Hennig M, Luberto C, Del Poeta M (2006) Glucosylceramide synthase is an essential regulator of pathogenicity of Cryptococcus neoformans. J Clin Invest 116(6):1651–1659

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Ramamoorthy V, Cahoon EB, Thokala M, Kaur J, Li J, Shah DM (2009) Sphingolipid C-9 methyltransferases are important for growth and virulence but not for sensitivity to antifungal plant defensins in Fusarium graminearum. Eukaryot Cell 8(2):217–229

    CAS  PubMed  Google Scholar 

  87. Zhu C, Wang M, Wang W, Ruan R, Ma H, Mao C, Li H (2014) Glucosylceramides are required for mycelial growth and full virulence in Penicillium digitatum. Biochem Biophys Res Commun 455(3–4):165–171

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Oura T, Kajiwara S (2008) Disruption of the sphingolipid Delta8-desaturase gene causes a delay in morphological changes in Candida albicans. Microbiology 154(Pt 12):3795–3803

    CAS  PubMed  Google Scholar 

  89. Oura T, Kajiwara S (2010) Candida albicans sphingolipid C9-methyltransferase is involved in hyphal elongation. Microbiology 156(Pt 4):1234–1243

    CAS  PubMed  Google Scholar 

  90. Raj S, Nazemidashtarjandi S, Kim J, Joffe L, Zhang X, Singh A, Mor V, Desmarini D, Djordjevic J, Raleigh DP, Rodrigues ML, London E, Del Poeta M, Farnoud AM (2017) Changes in glucosylceramide structure affect virulence and membrane biophysical properties of Cryptococcus neoformans. Biochim Biophys Acta Biomembr 1859(11):2224–2233

    CAS  PubMed  Google Scholar 

  91. Lattif AA, Mukherjee PK, Chandra J, Roth MR, Welti R, Rouabhia M, Ghannoum MA (2011) Lipidomics of Candida albicans biofilms reveals phase-dependent production of phospholipid molecular classes and role for lipid rafts in biofilm formation. Microbiology 157(Pt 11):3232–3242

    PubMed  PubMed Central  Google Scholar 

  92. Perdoni F, Signorelli P, Cirasola D, Caretti A, Galimberti V, Biggiogera M, Gasco P, Musicanti C, Morace G, Borghi E (2015) Antifungal activity of Myriocin on clinically relevant Aspergillus fumigatus strains producing biofilm. BMC Microbiol 15:248

    PubMed  PubMed Central  Google Scholar 

  93. Cerantola V, Guillas I, Roubaty C, Vionnet C, Uldry D, Knudsen J, Conzelmann A (2009) Aureobasidin A arrests growth of yeast cells through both ceramide intoxication and deprivation of essential inositolphosphorylceramides. Mol Microbiol 71(6):1523–1537

    CAS  PubMed  Google Scholar 

  94. Tan HW, Tay ST (2013) The inhibitory effects of aureobasidin A on Candida planktonic and biofilm cells. Mycoses 56(2):150–156

    CAS  PubMed  Google Scholar 

  95. Levery SB, Momany M, Lindsey R, Toledo MS, Shayman JA, Fuller M, Brooks K, Doong RL, Straus AH, Takahashi HK (2002) Disruption of the glucosylceramide biosynthetic pathway in Aspergillus nidulans and Aspergillus fumigatus by inhibitors of UDP-Glc:ceramide glucosyltransferase strongly affects spore germination, cell cycle, and hyphal growth. FEBS Lett 525(1–3):59–64

    CAS  PubMed  Google Scholar 

  96. Thevissen K, Warnecke DC, François IE, Leipelt M, Heinz E, Ott C, Zähringer U, Thomma BP, Ferket KK, Cammue BP (2004) Defensins from insects and plants interact with fungal glucosylceramides. J Biol Chem 279(6):3900–3905

    CAS  PubMed  Google Scholar 

  97. Thevissen K, de Mello TP, Xu D, Blankenship J, Vandenbosch D, Idkowiak-Baldys J, Govaert G, Bink A, Rozental S, de Groot PW, Davis TR, Kumamoto CA, Vargas G, Nimrichter L, Coenye T, Mitchell A, Roemer T, Hannun YA, Cammue BP (2012) The plant defensin RsAFP2 induces cell wall stress, septin mislocalization and accumulation of ceramides in Candida albicans. Mol Microbiol 84(1):166–180

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Tavares PM, Thevissen K, Cammue BP, François IE, Barreto-Bergter E, Taborda CP, Marques AF, Rodrigues ML, Nimrichter L (2008) In vitro activity of the antifungal plant defensin RsAFP2 against Candida isolates and its in vivo efficacy in prophylactic murine models of candidiasis. Antimicrob Agents Chemother 52(12):4522–4525

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Rodrigues ML, Travassos LR, Miranda KR, Franzen AJ, Rozental S, de Souza W, Alviano CS, Barreto-Bergter E (2000) Human antibodies against a purified glucosylceramide from Cryptococcus neoformans inhibit cell budding and fungal growth. Infect Immun 68(12):7049–7060

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Rodrigues ML, Shi L, Barreto-Bergter E, Nimrichter L, Farias SE, Rodrigues EG, Travassos LR, Nosanchuk JD (2007) Monoclonal antibody to fungal glucosylceramide protects mice against lethal Cryptococcus neoformans infection. Clin Vaccine Immunol 14(10):1372–1376

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Xisto MIDDS, Henao JEM, Dias LDS, Santos GMP, Calixto ROR, Bernardino MC, Taborda CP, Barreto-Bergter E (2019) Glucosylceramides from Lomentospora prolificans induce a differential production of cytokines and increases the microbicidal activity of macrophages. Front Microbiol 10:554

    PubMed  PubMed Central  Google Scholar 

  102. Da Silva AFC, Rodrigues ML, Farias SE, Almeida IC, Pinto MR, Barreto-Bergter E (2004) Glucosylceramides in Colletotrichum gloeosporioides are involved in the differentiation of conidia into mycelial cells. FEBS Lett 561(1–3):137–143

    PubMed  Google Scholar 

  103. Nimrichter L, Barreto-Bergter E, Mendonça-Filho RR, Kneipp LF, Mazzi MT, Salve P, Farias SE, Wait R, Alviano CS, Rodrigues ML (2004) A monoclonal antibody to glucosylceramide inhibits the growth of Fonsecaea pedrosoi and enhances the antifungal action of mouse macrophages. Microb Infect 6(7):657–665

    CAS  Google Scholar 

  104. Pinto MR, Rodrigues ML, Travassos LR, Haido RM, Wait R, Barreto-Bergter E (2002) Characterization of glucosylceramides in Pseudallescheria boydii and their involvement in fungal differentiation. Glycobiology 12(4):251–260

    CAS  PubMed  Google Scholar 

  105. Rollin-Pinheiro R, Liporagi-Lopes LC, De Meirelles JV, Souza LM, Barreto-Bergter E (2014) Characterization of Scedosporium apiospermum glucosylceramides and their involvement in fungal development and macrophage functions. PLoS One 9(5):e98149

    PubMed  PubMed Central  Google Scholar 

  106. Mor V, Rella A, Farnoud AM, Singh A, Munshi M, Bryan A, Naseem S, Konopka JB, Ojima I, Bullesbach E, Ashbaugh A, Linke MJ, Cushion M, Collins M, Ananthula HK, Sallans L, Desai PB, Wiederhold NP, Fothergill AW, Kirkpatrick WR, Patterson T, Wong LH, Sinha S, Giaever G, Nislow C, Flaherty P, Pan X, Cesar GV, de Melo TP, Frases S, Miranda K, Rodrigues ML, Luberto C, Nimrichter L, Del Poeta M (2015) Identification of a new class of antifungals targeting the synthesis of fungal sphingolipids. MBio 6(3):e00647

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Lazzarini C, Haranahalli K, Rieger R, Ananthula HK, Desai PB, Ashbaugh A, Linke MJ, Cushion MT, Ruzsicska B, Haley J, Ojima I, Del Poeta M (2018) Acylhydrazones as antifungal agents targeting the synthesis of fungal sphingolipids. Antimicrob Agents Chemother 62(5):e00156-18. https://doi.org/10.1128/AAC.00156-18

    Article  PubMed  PubMed Central  Google Scholar 

  108. Siebers M, Brands M, Wewer V, Duan Y, Holzl G, Dormann P (2016) Lipids in plant-microbe interactions. Biochim Biophys Acta 1861(9 Pt B):1379–1395

    CAS  PubMed  Google Scholar 

  109. Koga J, Yamauchi T, Shimura M, Ogawa N, Oshima K, Umemura K, Kikuchi M, Ogasawara N (1998) Cerebrosides A and C, sphingolipid elicitors of hypersensitive cell death and phytoalexin accumulation in rice plants. J Biol Chem 273(48):31985–31991

    CAS  PubMed  Google Scholar 

  110. Umemura K, Ogawa N, Yamauchi T, Iwata M, Shimura M, Koga J (2000) Cerebroside elicitors found in diverse phytopathogens activate defense responses in rice plants. Plant Cell Physiol 41(6):676–683

    CAS  PubMed  Google Scholar 

  111. Umemura K, Tanino S, Nagatsuka T, Koga J, Iwata M, Nagashima K, Amemiya Y (2004) Cerebroside elicitor confers resistance to fusarium disease in various plant species. Phytopathology 94(8):813–818

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rollin-Pinheiro, R., Bernardino, M.C., Barreto-Bergter, E. (2020). Sphingolipids: Functional and Biological Aspects in Mammals, Plants, and Fungi. In: Prasad, R., Singh, A. (eds) Analysis of Membrane Lipids. Springer Protocols Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-0631-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0631-5_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-0716-0630-8

  • Online ISBN: 978-1-0716-0631-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics