Skip to main content

Automated Five-Color Multiplex Co-detection of MicroRNA and Protein Expression in Fixed Tissue Specimens

  • Protocol
  • First Online:
In Situ Hybridization Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2148))

Abstract

microRNAs are an important class of noncoding regulatory RNAs with functional roles in development, physiology, and disease. Visualization of microRNA expression at a single-cell level has contributed to a better understanding of their biological function in animal models and their etiological contribution to human diseases. In addition, several microRNAs have been highlighted as potential biomarkers carrying diagnostic and prognostic information. Co-detection of microRNA expression with that of cell-type-specific proteins can enhance the interpretative power of expression changes during development or altered expression in pathological conditions. Here, we describe an automated fluorescence-based five-color multiplex assay for co-detection of microRNA (e.g., miR-10b, miR-21, miR-205), noncoding RNA (e.g., snRNA U6, 18S rRNA), and protein expression (e.g., cytokeratin 19, vimentin, collagen I) in paraffin-embedded formalin-fixed tissue slides on a Leica Bond Rx staining station. While this protocol uses mainly mouse tissues to demonstrate multiplex detection, it can be generally applied to single-cell expression analysis of other animal models and clinical specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O’Brien J, Hayder H, Zayed Y et al (2018) Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne) 9:402. https://doi.org/10.3389/fendo.2018.00402

    Article  Google Scholar 

  2. Gebert LFR, MacRae IJ (2019) Regulation of microRNA function in animals. Nat Rev Mol Cell Biol 20(1):21–37. https://doi.org/10.1038/s41580-018-0045-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Warford A (2016) In situ hybridisation: technologies and their application to understanding disease. Prog Histochem Cytochem 50(4):37–48. https://doi.org/10.1016/j.proghi.2015.12.001

    Article  PubMed  Google Scholar 

  4. Sempere LF (2014) Tissue slide-based microRNA characterization of tumors: how detailed could diagnosis become for cancer medicine? Expert Rev Mol Diagn 14(7):853–869. https://doi.org/10.1586/14737159.2014.944507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sempere LF (2014) Fully automated fluorescence-based four-color multiplex assay for co-detection of microRNA and protein biomarkers in clinical tissue specimens. Methods Mol Biol 1211:151–170. https://doi.org/10.1007/978-1-4939-1459-3_13

    Article  CAS  PubMed  Google Scholar 

  6. Jorgensen S, Baker A, Moller S et al (2010) Robust one-day in situ hybridization protocol for detection of microRNAs in paraffin samples using LNA probes. Methods 52(4):375–381. https://doi.org/10.1016/j.ymeth.2010.07.002

  7. Nuovo GJ (2010) In situ detection of microRNAs in paraffin embedded, formalin fixed tissues and the co-localization of their putative targets. Methods 52(4):307–315. https://doi.org/10.1016/j.ymeth.2010.08.009

  8. Nielsen BS, Holmstrom K (2013) Combined microRNA in situ hybridization and immunohistochemical detection of protein markers. Methods Mol Biol 986:353–365. https://doi.org/10.3389/fncel.2013.00160

  9. Nielsen BS, Moller T, Holmstrom K (2014) Chromogen detection of microRNA in frozen clinical tissue samples using LNA probe technology. Methods Mol Biol 1211:77–84. https://doi.org/10.1007/978-1-4939-1459-3_7

    Article  CAS  PubMed  Google Scholar 

  10. Ortega FG, Lorente JA, Garcia Puche JL et al (2015) miRNA in situ hybridization in circulating tumor cells—MishCTC. Sci Rep 5:9207. https://doi.org/10.1038/srep09207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gould BR, Damgaard T, Nielsen BS (2017) Chromogenic in situ hybridization methods for microRNA biomarker monitoring of drug safety and efficacy. Methods Mol Biol 1641:399–412. https://doi.org/10.1007/978-1-4939-7172-5_22

    Article  CAS  PubMed  Google Scholar 

  12. Patel Y, Lee JS, Chen H (2016) Clinicopathological analysis of miRNA expression in breast cancer tissues by using miRNA in situ hybridization. J Vis Exp 112. https://doi.org/10.3791/53928

  13. Kovacs-Valasek A, Szalontai B, Setalo G Jr et al (2018) Sensitive fluorescent hybridisation protocol development for simultaneous detection of microRNA and cellular marker proteins (in the retina). Histochem Cell Biol 150(5):557–566. https://doi.org/10.1007/s00418-018-1705-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lei Z, van Mil A, Xiao J et al (2018) MMISH: Multicolor microRNA in situ hybridization for paraffin embedded samples. Biotechnol Rep (Amst) e00255:18. https://doi.org/10.1016/j.btre.2018.e00255

    Article  Google Scholar 

  15. Moller T, James JP, Holmstrom K et al (2019) Co-detection of miR-21 and TNF-alpha mRNA in budding cancer cells in colorectal cancer. Int J Mol Sci 20(8). https://doi.org/10.3390/ijms20081907

  16. Koshkin AA, Wengel J (1998) Synthesis of novel 2′,3'-linked bicyclic thymine ribonucleosides. J Org Chem 63(8):2778–2781. https://doi.org/10.1021/jo972239c

  17. Yin VP (2018) In situ detection of MicroRNA expression with RNAscope probes. Methods Mol Biol 1649:197–208. https://doi.org/10.1007/978-1-4939-7213-5_13

    Article  CAS  PubMed  Google Scholar 

  18. Tili E, Mezache L, Michaille JJ et al (2018) microRNA 155 up regulation in the CNS is strongly correlated to Down’s syndrome dementia. Ann Diagn Pathol 34:103–109. https://doi.org/10.1016/j.anndiagpath.2018.03.006

    Article  PubMed  Google Scholar 

  19. Feng C, Bai M, Yu NZ et al (2017) MicroRNA-181b negatively regulates the proliferation of human epidermal keratinocytes in psoriasis through targeting TLR4. J Cell Mol Med 21(2):278–285. https://doi.org/10.1111/jcmm.12963

    Article  CAS  PubMed  Google Scholar 

  20. Sahmatova L, Tankov S, Prans E et al (2016) MicroRNA-155 is dysregulated in the skin of patients with vitiligo and inhibits melanogenesis-associated genes in melanocytes and keratinocytes. Acta Derm Venereol 96(6):742–747. https://doi.org/10.2340/00015555-2394

    Article  CAS  PubMed  Google Scholar 

  21. Bar I, Merhi A, Abdel-Sater F et al (2017) The MicroRNA miR-210 Is expressed by cancer cells but also by the tumor microenvironment in triple-negative breast cancer. J Histochem Cytochem 65(6):335–346. https://doi.org/10.1369/0022155417702849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hug KA, Anthony L, Eldeiry D et al (2015) Expression and tissue distribution of MicroRNA-21 in malignant and benign breast tissues. Anticancer Res 35(6):3175–3183

    CAS  PubMed  Google Scholar 

  23. Huo L, Wang Y, Gong Y et al (2016) MicroRNA expression profiling identifies decreased expression of miR-205 in inflammatory breast cancer. Mod Pathol 29(4):330–346. https://doi.org/10.1038/modpathol.2016.38

    Article  CAS  PubMed  Google Scholar 

  24. Danilova OV, Paiva C, Kaur P et al (2015) MIR21 is differentially expressed in the lymphoid tissue and modulated by stromal signalling in chronic lymphocytic leukaemia. Br J Haematol 170(2):272–275. https://doi.org/10.1111/bjh.13282

    Article  PubMed  Google Scholar 

  25. Knudsen KN, Lindebjerg J, Nielsen BS et al (2017) MicroRNA-200b is downregulated in colon cancer budding cells. PLoS One 12(5):e0178564. https://doi.org/10.1371/journal.pone.0178564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Andrew AS, Marsit CJ, Schned AR et al (2014) Expression of tumor suppressive microRNA-34a is associated with a reduced risk of bladder cancer recurrence. Int J Cancer. https://doi.org/10.1002/ijc.29413

  27. MacKenzie TA, Schwartz GN, Calderone HM et al (2014) Stromal expression of miR-21 identifies high-risk group in triple-negative breast cancer. Am J Pathol 184(12):3217–3225. https://doi.org/10.1016/j.ajpath.2014.08.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee KS, Nam SK, Koh J et al (2016) Stromal expression of MicroRNA-21 in advanced colorectal cancer patients with distant metastases. J Pathol Transl Med 50(4):270–277. https://doi.org/10.4132/jptm.2016.03.19

    Article  PubMed  PubMed Central  Google Scholar 

  29. Xiang ZL, Zhao XM, Zhang L et al (2016) MicroRNA-34a expression levels in serum and intratumoral tissue can predict bone metastasis in patients with hepatocellular carcinoma. Oncotarget 7(52):87246–87256. https://doi.org/10.18632/oncotarget.13531

    Article  PubMed  PubMed Central  Google Scholar 

  30. Babapoor S, Horwich M, Wu R et al (2016) microRNA in situ hybridization for miR-211 detection as an ancillary test in melanoma diagnosis. Mod Pathol 29(5):461–475. https://doi.org/10.1038/modpathol.2016.44

    Article  CAS  PubMed  Google Scholar 

  31. Shi LJ, Zhang CY, Zhou ZT et al (2015) MicroRNA-155 in oral squamous cell carcinoma: overexpression, localization, and prognostic potential. Head Neck 37(7):970–976. https://doi.org/10.1002/hed.23700

    Article  PubMed  Google Scholar 

  32. Chaudhuri AD, Yelamanchili SV, Fox HS (2013) Combined fluorescent in situ hybridization for detection of microRNAs and immunofluorescent labeling for cell-type markers. Front Cell Neurosci 7:160. https://doi.org/10.3389/fncel.2013.00160

  33. de Planell-Saguer M, Rodicio MC, Mourelatos Z (2010) Rapid in situ codetection of noncoding RNAs and proteins in cells and formalin-fixed paraffin-embedded tissue sections without protease treatment. Nat Protoc 5(6):1061–1073. https://doi.org/10.1038/nprot.2010.62

  34. Nuovo GJ, Elton TS, Nana-Sinkam P et al (2009) A methodology for the combined in situ analyses of the precursor and mature forms of microRNAs and correlation with their putative targets. Nat Protoc 4(1):107–115. https://doi.org/10.1038/nprot.2008.215

  35. Blom S, Paavolainen L, Bychkov D et al (2017) Systems pathology by multiplexed immunohistochemistry and whole-slide digital image analysis. Sci Rep 7(1):15580. https://doi.org/10.1038/s41598-017-15798-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gorris MAJ, Halilovic A, Rabold K et al (2018) Eight-color multiplex immunohistochemistry for simultaneous detection of multiple immune checkpoint molecules within the tumor microenvironment. J Immunol 200(1):347–354. https://doi.org/10.4049/jimmunol.1701262

    Article  CAS  PubMed  Google Scholar 

  37. Halse H, Colebatch AJ, Petrone P et al (2018) Multiplex immunohistochemistry accurately defines the immune context of metastatic melanoma. Sci Rep 8(1):11158. https://doi.org/10.1038/s41598-018-28944-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Parra ER, Uraoka N, Jiang M et al (2017) Validation of multiplex immunofluorescence panels using multispectral microscopy for immune-profiling of formalin-fixed and paraffin-embedded human tumor tissues. Sci Rep 7(1):13380. https://doi.org/10.1038/s41598-017-13942-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sempere LF, Korc M (2013) A method for conducting highly sensitive microRNA in situ hybridization and immunohistochemical analysis in pancreatic cancer. Methods Mol Biol 980:43–59. https://doi.org/10.1007/978-1-62703-287-2_4

Download references

Acknowledgments

We would like to thank Scot Marsh at Leica Biosystems for technical assistance and suggestions during assay development. We would like to thank Tom Wood and other members of MSU Veterinary Diagnostics Laboratory for technical assistance in tissue procurement and preparation. This work was supported, in part, by National Cancer Institute R21 CA226579 grant to LS and by Phi Beta Psi Sorority to LS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo F. Sempere .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sempere, L.F., Zaluzec, E., Kenyon, E., Kiupel, M., Moore, A. (2020). Automated Five-Color Multiplex Co-detection of MicroRNA and Protein Expression in Fixed Tissue Specimens. In: Nielsen, B.S., Jones, J. (eds) In Situ Hybridization Protocols . Methods in Molecular Biology, vol 2148. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0623-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0623-0_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0622-3

  • Online ISBN: 978-1-0716-0623-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics