Skip to main content

Zika Virus Amplification Using Strand Displacement Isothermal Method and Sequencing Using Nanopore Technology

  • Protocol
  • First Online:
Zika Virus

Abstract

Development of novel point of care diagnostic methods in order to help in implementing disease control program and identifying the causative agent of an outbreak is crucial. Classical diagnostic techniques, e.g., real-time polymerase chain reaction (PCR), rely on the presence of the nucleic acid sequence of the target in GenBank. In the case of an emerging new strain of a known or novel pathogen, false-negative results will be recorded by PCR. On the other hand, next-generation sequencing technologies allow rapid whole genome sequencing without previous knowledge of the target. One of these methods is the Oxford Nanopore sequencing technique, which utilizes a portable device named MinION and has a short run time. In this protocol, we describe the development of a novel nanopore sequencing protocol by combining random isothermal amplification technology and nanopore sequencing. The established protocol is rapid (<7 h) and sensitive as less than 4% of the sequenced RNA belonged to the target virus, Zika. Interestingly, we have established an offline BLAST search for the data analysis that facilitates the use of the whole protocol at remote settings without the need of an Internet connection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Waggoner JJ, Pinsky BA (2016) Zika virus: diagnostics for an emerging pandemic threat. J Clin Microbiol 54(4):860–867. https://doi.org/10.1128/JCM.00279-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. International Committee on Taxonomy of Viruses (2018) ICTV Master Species List 2018b.v1. https://talk.ictvonline.org/files/master-species-lists/m/msl/8266. Accessed 16 Apr 2019

  3. Terzian ACB, Zini N, Sacchetto L, Rocha RF, Parra MCP, Del Sarto JL et al (2018) Evidence of natural Zika virus infection in neotropical non-human primates in Brazil. Sci Rep 8(1):16034. https://doi.org/10.1038/s41598-018-34423-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. World Health Organization (2018) List of Blueprint priority diseases. https://www.who.int/blueprint/priority-diseases/en/. Accessed 01 Apr 2019

  5. Patterson J, Sammon M, Garg M (2016) Dengue, Zika and Chikungunya: emerging arboviruses in the New World. West J Emerg Med 17(6):671–679. https://doi.org/10.5811/westjem.2016.9.30904

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ciota AT, Kramer LD (2013) Vector-virus interactions and transmission dynamics of West Nile virus. Viruses 5(12):3021–3047. https://doi.org/10.3390/v5123021

    Article  PubMed  PubMed Central  Google Scholar 

  7. Paixao ES, Teixeira MG, Rodrigues LC (2018) Zika, chikungunya and dengue: the causes and threats of new and re-emerging arboviral diseases. BMJ Glob Health 3(Suppl 1):e000530. https://doi.org/10.1136/bmjgh-2017-000530

    Article  PubMed  PubMed Central  Google Scholar 

  8. Turtle L, Griffiths MJ, Solomon T (2012) Encephalitis caused by flaviviruses. QJM 105(3):219–223. https://doi.org/10.1093/qjmed/hcs013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gould EA, Solomon T (2008) Pathogenic flaviviruses. Lancet 371(9611):500–509. https://doi.org/10.1016/S0140-6736(08)60238-X

    Article  CAS  PubMed  Google Scholar 

  10. Mansuy JM, Mengelle C, Pasquier C, Chapuy-Regaud S, Delobel P, Martin-Blondel G, Izopet J (2017) Zika virus infection and prolonged viremia in whole-blood specimens. Emerg Infect Dis 23(5):863–865. https://doi.org/10.3201/eid2305.161631

    Article  PubMed  PubMed Central  Google Scholar 

  11. van Meer MPA, Mogling R, Klaasse J, Chandler FD, Pas SD, van der Eijk AA, Koopmans MPG et al (2017) Re-evaluation of routine dengue virus serology in travelers in the era of Zika virus emergence. J Clin Virol 92:25–31. https://doi.org/10.1016/j.jcv.2017.05.001

    Article  PubMed  Google Scholar 

  12. Simner PJ, Miller S, Carroll KC (2018) Understanding the promises and hurdles of metagenomic next-generation sequencing as a diagnostic tool for infectious diseases. Clin Infect Dis 66(5):778–788. https://doi.org/10.1093/cid/cix881

    Article  CAS  PubMed  Google Scholar 

  13. Greninger AL (2018) The challenge of diagnostic metagenomics. Expert Rev Mol Diagn 18(7):605–615. https://doi.org/10.1080/14737159.2018.1487292

    Article  CAS  PubMed  Google Scholar 

  14. Besser J, Carleton HA, Gerner-Smidt P, Lindsey RL, Trees E (2018) Next-generation sequencing technologies and their application to the study and control of bacterial infections. Clin Microbiol Infect 24(4):335–341. https://doi.org/10.1016/j.cmi.2017.10.013

    Article  CAS  PubMed  Google Scholar 

  15. Quiagen Hilden (2019) REPLI-g Mini Kit For highly uniform whole genome amplification from small or precious samples. https://www.qiagen.com/us/shop/repli-g-mini-kit/#orderinginformation. Accessed 03 May 2019

  16. Liu L, Li Y, Li S, Hu N, He Y, Pong R et al (2012) Comparison of next-generation sequencing systems. J Biomed Biotechnol 2012:251364. https://doi.org/10.1155/2012/251364

    Article  PubMed  PubMed Central  Google Scholar 

  17. Abd El Wahed A, Weidmann M, Hufert FT (2015) Diagnostics-in-a-Suitcase: development of a portable and rapid assay for the detection of the emerging avian influenza A (H7N9) virus. J Clin Virol 69:16–21. https://doi.org/10.1016/j.jcv.2015.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Abd El Wahed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hansen, S. et al. (2020). Zika Virus Amplification Using Strand Displacement Isothermal Method and Sequencing Using Nanopore Technology. In: Kobinger, G., Racine, T. (eds) Zika Virus. Methods in Molecular Biology, vol 2142. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0581-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0581-3_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0580-6

  • Online ISBN: 978-1-0716-0581-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics