Advertisement

Model for Studying the Effects of Chronic Metabolic Disease on Endogenous Bone Marrow Stem Cell Populations

  • Yashar Mehrbani Azar
  • Maria Jacoba Kruger
  • Dalene de Swardt
  • Michelle Maartens
  • Ascentia Mathapelo Seboko
  • William Frank Ferris
  • Mari van de VyverEmail author
Protocol
  • 67 Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 2138)

Abstract

Disease-associated impairment/dysfunction of stem cell populations is prominent in chronic metabolic and inflammatory diseases, such as type 2 diabetes mellitus (DM) where the multifunctional properties (viability, proliferation, paracrine secretion, multilineage differentiation) of bone marrow resident mesenchymal stem cells (MSCs) can be affected. The growth and viability impairments make it difficult to study the underlying molecular mechanisms related to the dysfunction of these cells in vitro. We have consequently optimized the isolation and culture conditions for impaired/dysfunctional bone marrow MSCs from B6.Cg-Lepob/J obese prediabetic mice. The method described here permits ex vivo investigations into disease-associated functional impairments and the dysregulated molecular mechanisms in these primary MSCs through direct comparisons with their healthy wild-type C57BL6/J control mouse counterparts.

Key words

Mesenchymal stem cells Diabetes Bone marrow Osteogenesis Adipogenesis Metabolic disease 

Notes

Acknowledgements

This research was supported by the National Research Foundation (NRF) of South Africa.

References

  1. 1.
    Bianco P, Riminucci M, Gronthos S, Robey PG (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19(3):180–192CrossRefGoogle Scholar
  2. 2.
    Morrison SJ, Scadden DT (2014) The bone marrow niche for haematopoietic stem cells. Nature 505(7843):327–334CrossRefGoogle Scholar
  3. 3.
    Schatteman GC (2004) Adult bone marrow-derived hemangioblasts, endothelial cell progenitors, and EPCs. Curr Top Dev Biol 64:141–180CrossRefGoogle Scholar
  4. 4.
    Polymeri A, Giannobile WV, Kaigler D (2016) Bone marrow stromal stem cells in tissue engineering and regenerative medicine. Horm Metab Res 48(11):700–713CrossRefGoogle Scholar
  5. 5.
    Fijany A, Sayadi LR, Khoshab N, Banyard DA, Shaterian A, Alexander M et al (2019) Mesenchymal stem cell dysfunction in diabetes. Mol Biol Rep 46(1):1459–1475CrossRefGoogle Scholar
  6. 6.
    Kornicka K, Houston J, Marycz K (2018) Dysfunction of mesenchymal stem cells isolated from metabolic syndrome and type 2 diabetic patients as result of oxidative stress and autophagy may limit their potential therapeutic use. Stem Cell Rev 14(3):337–345CrossRefGoogle Scholar
  7. 7.
    van de Vyver M (2017) Intrinsic mesenchymal stem cell dysfunction in diabetes mellitus: implications for autologous cell therapy. Stem Cells Dev 26(14):1042–1053CrossRefGoogle Scholar
  8. 8.
    Mangialardi G, Madeddu P (2016) Bone marrow-derived stem cells: a mixed blessing in the multifaceted world of diabetic complications. Curr Diab Rep 16(5):43.  https://doi.org/10.1007/s11892-016-0730-xCrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    van de Vyver M, Niesler C, Myburgh KH, Ferris WF (2016) Delayed wound healing and dysregulation of IL6/STAT3 signalling in MSCs derived from pre-diabetic obese mice. Mol Cell Endocrinol 426:1–10CrossRefGoogle Scholar
  10. 10.
    Mehrbani Azar Y, Green R, Niesler CU, van de Vyver M (2018) Antioxidant preconditioning improves the paracrine responsiveness of bone marrow mesenchymal stem cells to diabetic wound fluid. Stem Cells Dev.  https://doi.org/10.1089/scd.2018.0145
  11. 11.
    Tan J, Zhou L, Zhou Y et al (2017) The influence of diabetes mellitus on proliferation and osteoblastic differentiation of MSCs. Curr Stem Cell Res Ther 12(5):388–400CrossRefGoogle Scholar
  12. 12.
    Bakopoulou A, Apatzidou D, Aggelidou E, Gousopoulou E, Leyhausen G, Volk J et al (2017) Isolation and prolonged expansion of oral mesenchymal stem cells under clinical-grade, GMP-compliant conditions differentially affects “stemness” properties. Stem Cell Res Ther 8(1):247.  https://doi.org/10.1186/s13287-017-0705-0CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Briquet A, Dubois S, Bekaert S, Dolhet M, Beguin Y, Gothot A (2010) Prolonged ex vivo culture of human bone marrow mesenchymal stem cells influences their supportive activity toward NOD/SCID-repopulating cells and committed progenitor cells of B lymphoid and myeloid lineages. Haematologica 95(1):47–56CrossRefGoogle Scholar
  14. 14.
    Lu L, Song H-F, Zhang W-G, Liu XQ, Zhu Q, Cheng XL et al (2012) Potential role of 20S proteasome in maintaining stem cell integrity of human bone marrow stromal cells in prolonged culture expansion. Biochem Biophys Res Commun 422(1):121–127CrossRefGoogle Scholar
  15. 15.
    Vacanti V, Kong E, Suzuki G, Sato K, Canty JM, Lee T (2005) Phenotypic changes of adult porcine mesenchymal stem cells induced by prolonged passaging in culture. J Cell Physiol 205(2):194–201CrossRefGoogle Scholar
  16. 16.
    Jackson Laboratories Mouse strain 000632Google Scholar
  17. 17.
    Batt RA, Everard DM, Gillies G, Wilkinson M, Wilson CA, Yeo TA (1982) Investigation into the hypogonadism of the obese mouse (genotype Ob/Ob). J Reprod Fertil 64(2):363–371CrossRefGoogle Scholar
  18. 18.
    Batt RA, Hambi M (1982) Development of the hypothermia in obese mice (genotype Ob/Ob). Int J Obes 6(4):391–397PubMedGoogle Scholar
  19. 19.
    Rath EA, Thenen SW (1980) Influence of age and genetic background on in vivo fatty acid synthesis in obese (Ob/Ob) mice. Biochim Biophys Acta 618:18–27CrossRefGoogle Scholar
  20. 20.
    Dubuc PU (1976) The development of obesity, hyperinsulinemia, and hyperglycemia in Ob/Ob mice. Metab Clin Exp 25(1):1567–1574CrossRefGoogle Scholar
  21. 21.
    Boozer CN, Mayer J (1976) Effects of long-term restricted insulin production in obese-hyperglycemic (genotype Ob/Ob) mice. Diabetologia 12(2):181–187CrossRefGoogle Scholar
  22. 22.
    Ewart-Toland A, Mounzih K, Qiu J, Chehab FF (1999) Effect of the genetic background on the reproduction of leptin-deficient obese mice. Endocrinology 140(2):732–738CrossRefGoogle Scholar
  23. 23.
    Seitz O, Schürmann C, Hermes N, Müller E, Pfeilschifter J, Frank S et al (2010) Wound healing in mice with high-fat diet- or Ob gene-induced diabetes-obesity syndromes: a comparative study. Exp Diabetes Res 2010:476969.  https://doi.org/10.1155/2010/476969CrossRefPubMedGoogle Scholar
  24. 24.
    Yu WH, Kimura M, Walczewska A et al (1997) Role of leptin in hypothalamic-pituitary function. Proc Natl Acad Sci U S A 94(3):1023–1028CrossRefGoogle Scholar
  25. 25.
    Cameron CM, Kostyo JL, Adamafio NA, Dunbar JC (1987) Metabolic basis for the diabetogenic action of growth hormone in the obese (Ob/Ob) mouse. Endocrinology 120(4):1568–1575CrossRefGoogle Scholar
  26. 26.
    Schultz MB, Sinclair DA (2016) When stem cells grow old: phenotypes and mechanisms of stem cell aging. Development 143(1):3–14CrossRefGoogle Scholar
  27. 27.
    Sivula CP, Suckow MA (2018) Euthanasia. In: Weichbrod RH, Thompson GA, Norton JN (eds) Management of animal care and use programs in research, education, and testing, 2nd edn. CRC Press/Taylor & Francis, Boca Raton, FL. ISBN-10: 9781498748445Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Yashar Mehrbani Azar
    • 1
  • Maria Jacoba Kruger
    • 1
  • Dalene de Swardt
    • 1
  • Michelle Maartens
    • 1
  • Ascentia Mathapelo Seboko
    • 1
  • William Frank Ferris
    • 1
  • Mari van de Vyver
    • 1
    Email author
  1. 1.Department of Medicine, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa

Personalised recommendations